Analisis Dinamik Model SIRC pada Transmisi Hepatitis B dengan Sirosis Hati

Ririn Febriyanti, Bayu Prihandono, Mariatul Kiftiah

Abstract


Hepatitis B is an infection of the liver that can cause liver cirrhosis. Liver cirrhosis can occur due to the formation of scar tissue in individuals who have prolonged hepatitis B. Transmission of hepatitis B can occur in two ways, namely horizontal and vertical. In this research, this problem is modeled in a mathematical model using the SIRC model, where the population is grouped into four sub-populations, namely susceptible (S), infected (I), cured or immune due to vaccination (R) and cirrhosis. liver (C). From the analysis, two equilibrium points were obtained, namely the disease-free equilibrium point the endemic equilibrium point  The basic reproduction number   is obtained using the Next Generation Matrix. The analysis results show that if , then the disease-free equilibrium point is locally asymptotically stable, which means that hepatitis B transmission in liver cirrhosis does not spread. Meanwhile, if  , then the disease-free equilibrium point is locally asymptotically stable, which means that hepatitis B transmission in liver cirrhosis does not spread. Meanwhile, if , this means that hepatitis B transmission in liver cirrhosis is influenced by contact between susceptible and infectious individuals. To support the results of the analytical analysis, numerical simulations are provided to describe the behavior of the SIRC model.

Keywords


Hepatitis B Virus; Equilibrium Point; Basic Reproduction Number

Full Text:

PDF

References


I. S. Sair, “Solusi Numerik Model Penyebaran pada Penyakit Hepatitis B dI Provinsi Sulawesi Selatan Menggunakan Metode Runge-Kutta Orde Empat,” 2018.

T. Khan, Z. Ullah, N. Ali, and G. Zaman, “Modeling and control of the hepatitis B virus spreading using an epidemic model,” Chaos Solitons Fractals, vol. 124, pp. 1–9, Jul. 2019, doi: 10.1016/j.chaos.2019.04.033.

CDC, “Hepatitis B FAQs | CDC,” Centers for Disease Control and Prevention. Accessed: Feb. 18, 2023. [Online]. Available: https://www.cdc.gov/hepatitis/hbv/bfaq.htm

R. P. Triananda, M. A. Yuswar, and Robiyanto, “Pola penggunaan obat-obatan pada pasien Ssirosis hati rawat inap RSUD Dr. Soedarso Pontianak.” jurnal mahasiswa farmasi fakultas kedokteran Untan, 2019.

K. Humolungo and R. Paudi, “Model Matematika SIUC pada Kasus Kanker Serviks dengan Vaksinasi,” Euler J. Ilm. Mat. Sains Dan Teknol., vol. 7, no. 1, pp. 32–36, Jun. 2019, doi: 10.34312/euler.v7i1.10331.

S. Zhang and Y. Zhou, “The analysis and application of an HBV model,” Appl. Math. Model., vol. 36, no. 3, pp. 1302–1312, 2012, doi: 10.1016/j.apm.2011.07.087.

L. B. Dano, K. P. Rao, and T. D. Keno, “Modeling the Combined Effect of Hepatitis B Infection and Heavy Alcohol Consumption on the Progression Dynamics of Liver Cirrhosis,” J. Math., vol. 2022, pp. 1–18, Apr. 2022, doi: 10.1155/2022/6936396.

M. A. Muniroh, T. Trisilowati, and W. M. Kusumawinahyu, “Analisis Dinamik Model Hepatitis B dengan Sirosis Hati,” Limits J. Math. Its Appl., vol. 19, no. 1, p. 101, May 2022, doi: 10.12962/limits.v19i1.11060.

S. Side, M. S. Wahyuni, and Muh. Rifki, “Solusi Numerik Model SIR pada Penyebaran Penyakit Hepatitis B dengan Metode Perturbasi Homotopi di Provinsi Sulawesi Selatan,” J. Math. Comput. Stat., vol. 3, no. 2, p. 79, Oct. 2020, doi: 10.35580/jmathcos.v3i2.20122.

N. ’Ain Supu, Saltina, K. Palalu, and R. Ismail, “Model Epidemi SICKR pada Penyebaran Penyakit Hepatitis B dan Kanker Hati,” Open Science Framework, preprint, Jan. 2021. doi: 10.31219/osf.io/9j5er.

L. Perko, Differential equations and dynamical systems, 3rd ed. in Texts in applied mathematics, no. 7. New York: Springer, 2001.

O. Diekmann, J. A. P. Heesterbeek, and M. G. Roberts, “The construction of next-generation matrices for compartmental epidemic models,” J. R. Soc. Interface, vol. 7, no. 47, pp. 873–885, Jun. 2010, doi: 10.1098/rsif.2009.0386.

R. Resmawan dan N. Nurwan, "Konstruksi Bilangan Reproduksi Dasar pada Model Epidemik SEIRS-SEI Penyebaran Malaria dengan Vaksinasi dan Pengobatan," Jurnal Matematika Integratif, vol. 13, no. 2, pp. 105-114, 2017. doi : https://doi.org/10.24198/jmi.v13.n2.12332.105-114

R. C. Anton, “Aljabar Linear Elementer versi Aplikasi. Edisi 8 Jilid 1.”

BPS kota pontianak, “BPS Kota Pontianak.” Accessed: Jun. 20, 2023. [Online]. Available: https://pontianakkota.bps.go.id/indicator/12/31/2/jumlah-penduduk.html

Pontianak dataset, “Data Hasil Capaian Imunisasi HB0 Di Kota Pontianak - Satu data Kota Pontianak.” Accessed: Jun. 20, 2023. [Online]. Available: https://data.pontianak.go.id/dataset/hasil-capaian-imunisasi-hb0




DOI: https://doi.org/10.37905/euler.v11i2.22761

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Ririn Febriyanti, Bayu Prihandono, Mariatul Kiftiah

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:


                         EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 Email: euler@ung.ac.id
 +6287743200854 (WhatsApp Only)
 Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.

slot online slot gacor slot