Arithmetic Mean Derivative-Based Quartet Midpoint Rule

Rike Marjulisa, Ayunda Putri

Abstract


A definite integral that is difficult to solve analytically can be calculated using the numerical integration methods. The midpoint rule is a prominent rule for approximating definite integrals. This article discusses a version of the quartet midpoint rule that includes the derivative of the arithmetic mean . The proposed rule increases precision over the previous rules. Furthermore, the error term is obtained by using the concept of precision between quadrature and exact values. Finally, the proposed rule is more effective than the present rule, according to numerical simulation results.

Keywords


Midpoint Rule; Arithmetic Mean; Derivative-Based Quadrature; Numerical Integration; Definite Integral

Full Text:

PDF

References


C.O.E. Burg and E. Degny, ”Derivative-based midpoint quadrature rule”, Appl. Math., vol.4, No.1A, pp. 228 - 234, 2013, doi: 10.4236/am.2013.41A035.

G. Dahlquist and A. Björck, “Numerical Methods in Scientific Computing: Volume 1,” New York: SIAM, 2008.

M.Deghan, M. Masjed-Jamei and M. R. Eslahchi, ”On Numerical Improvement of Close Newton-Cotes Quadrature Rules”, App. Math. Comp., Vol.165, No.2, pp. 251-260, 2005, doi: 10.1016/j.amc.2004.07.009.

R. Marjulisa, M. Imran, Syamsudhuha, “Arithmetic Mean Derivative Based Midpoint

Rule”, Appl. Math. Scie., Vol.12, No. 13, pp. 625-633, 2018.

R. Marjulisa and M. Natsir, “Metode Newton-Cotes Tertutup Terkoreksi Berdasarkan Turunan Rata-Rata Aritmatika, SAINSTEK, vol.9, No.2, pp.151-156, 2021, doi: https://doi.org/10.35583/js.v9i2

R.L. Burden and J. D. Faires, Numerical Analysis, 9 Ed. Boston: TBrooks/Cole, 2011.

T. Ramachandran and R. Parimala,”Centroidal mean derivative-based closed Newton-Cotes quadrature”, Int. Jou. Sci. Resea., vol.5, No.8, pp. 338 - 343, 2016.

T. Ramachandran, D. Udayakumar and R. Parimala, ”Geometric mean derivative-based closed Newton Cotes quadrature”, Int. Jou. Pure. Engg. Math, vol.4, No.1, pp.107-116,

T. Ramachandran, D. Udayakumar and R. Parimala, “Harmonic mean derivative-based closed Newton Cotes quadrature”, IOSR. Jou. Math., Vol.12, No.3, pp. 36 - 41, 2016.

T. Ramachandran, D. Udayakumar and R. Parimala, “Heronian mean derivative-based

closed Newton Cotes quadrature”, IOSR. Jou. Math., Vol.7, pp. 53 - 58,2016.

T. Ramachandran, D. Udayakumar and R. Parimala, “Root mean square derivative-based closed Newton Cotes quadrature”, IOSR. Jou. Sci. Resea. Pub., Vol.6, No.11, pp. 9-13,

T. Ramachandran, D. Udayakumar and R. Parimala, “Contra-harmonic mean derivative-

based closed Newton Cotes quadrature”, Glo. Jou. Pure. Appl. Math., Vol.13, No.5, pp.

-1330, 2017.

T. Ramachandran, D. Udayakumar and R. Parimala, “Comparison of arithmetic mean,

geometric mean and harmonic mean derivative-based closed Newton Cotes quadrature”,

Prog. Nonli. Dyn. Chaos., Vol.4, No.1, pp. 35- 43, 2016.

T. Ramachandran and R. Parimala, “Open Newton-Cotes quadrature with midpoint

derivative for integration of algebraic functions”, Int. Jou. Resea. Engg. Tech., Vol.4,

No.10, pp. 430-435, 2015.

F. Zafar, S. Salem, and C.O.E. Burg, “New Derivative Based Open Newton Cotes Quadrature Rules”, Abs. Appl. Analy., vol. 2014, pp. 1–16, 2014, doi: https://doi.org/10.1155/2014/109138.




DOI: https://doi.org/10.37905/euler.v11i2.22961

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Rike Marjulisa, Ayunda Putri

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:


                         EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 Email: euler@ung.ac.id
 +6287743200854 (WhatsApp Only)
 Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.

slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor