Arithmetic Mean Derivative-Based Quartet Midpoint Rule
Abstract
Keywords
Full Text:
PDFReferences
C.O.E. Burg and E. Degny, ”Derivative-based midpoint quadrature rule”, Appl. Math., vol.4, No.1A, pp. 228 - 234, 2013, doi: 10.4236/am.2013.41A035.
G. Dahlquist and A. Björck, “Numerical Methods in Scientific Computing: Volume 1,” New York: SIAM, 2008.
M.Deghan, M. Masjed-Jamei and M. R. Eslahchi, ”On Numerical Improvement of Close Newton-Cotes Quadrature Rules”, App. Math. Comp., Vol.165, No.2, pp. 251-260, 2005, doi: 10.1016/j.amc.2004.07.009.
R. Marjulisa, M. Imran, Syamsudhuha, “Arithmetic Mean Derivative Based Midpoint
Rule”, Appl. Math. Scie., Vol.12, No. 13, pp. 625-633, 2018.
R. Marjulisa and M. Natsir, “Metode Newton-Cotes Tertutup Terkoreksi Berdasarkan Turunan Rata-Rata Aritmatika, SAINSTEK, vol.9, No.2, pp.151-156, 2021, doi: https://doi.org/10.35583/js.v9i2
R.L. Burden and J. D. Faires, Numerical Analysis, 9 Ed. Boston: TBrooks/Cole, 2011.
T. Ramachandran and R. Parimala,”Centroidal mean derivative-based closed Newton-Cotes quadrature”, Int. Jou. Sci. Resea., vol.5, No.8, pp. 338 - 343, 2016.
T. Ramachandran, D. Udayakumar and R. Parimala, ”Geometric mean derivative-based closed Newton Cotes quadrature”, Int. Jou. Pure. Engg. Math, vol.4, No.1, pp.107-116,
T. Ramachandran, D. Udayakumar and R. Parimala, “Harmonic mean derivative-based closed Newton Cotes quadrature”, IOSR. Jou. Math., Vol.12, No.3, pp. 36 - 41, 2016.
T. Ramachandran, D. Udayakumar and R. Parimala, “Heronian mean derivative-based
closed Newton Cotes quadrature”, IOSR. Jou. Math., Vol.7, pp. 53 - 58,2016.
T. Ramachandran, D. Udayakumar and R. Parimala, “Root mean square derivative-based closed Newton Cotes quadrature”, IOSR. Jou. Sci. Resea. Pub., Vol.6, No.11, pp. 9-13,
T. Ramachandran, D. Udayakumar and R. Parimala, “Contra-harmonic mean derivative-
based closed Newton Cotes quadrature”, Glo. Jou. Pure. Appl. Math., Vol.13, No.5, pp.
-1330, 2017.
T. Ramachandran, D. Udayakumar and R. Parimala, “Comparison of arithmetic mean,
geometric mean and harmonic mean derivative-based closed Newton Cotes quadrature”,
Prog. Nonli. Dyn. Chaos., Vol.4, No.1, pp. 35- 43, 2016.
T. Ramachandran and R. Parimala, “Open Newton-Cotes quadrature with midpoint
derivative for integration of algebraic functions”, Int. Jou. Resea. Engg. Tech., Vol.4,
No.10, pp. 430-435, 2015.
F. Zafar, S. Salem, and C.O.E. Burg, “New Derivative Based Open Newton Cotes Quadrature Rules”, Abs. Appl. Analy., vol. 2014, pp. 1–16, 2014, doi: https://doi.org/10.1155/2014/109138.
DOI: https://doi.org/10.37905/euler.v11i2.22961
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Rike Marjulisa, Ayunda Putri
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:
EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI |
Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia |
Email: euler@ung.ac.id |
+6287743200854 (WhatsApp Only) |
Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. |