Modifikasi Garis Singgung Untuk Mempercepat Iterasi Pada Metode Newton Raphson

Maxrizal Maxrizal

Abstract


The Newton-Raphson method is one of the methods to find solutions or roots of nonlinear equations. This method converges faster than other methods and is more effective in finding doubles. In this study, it will be shown that the Newton-Raphson modification uses modifications to the tangent equation. The results show that for every nth iteration, the speed difference of Newton Raphson modification is __. Furthermore, the convergence of Newton Raphson is __, and for Newton Raphson modification is __.

Keywords


Newton Raphson; Nonlinear Equations; Newton Modification

Full Text:

PDF

References


E. Sunandar and I. Indrianto, “Perbandingan Metode Newton-Raphson & Metode Secant Untuk Mencari Akar Persamaan Dalam Sistem Persamaan Non-Linier,” Petir, vol. 13, no. 1, pp. 72–79, 2020, doi: https://doi.org/10.33322/petir.v13i1.893.

P. Batarius, “Perbandingan Metode Newton-Raphson Modifikasi dan Metode Secant Modifikasi Dalam Penentuan Akar Persamaan,” Prosiding, Semin. Nas. Ris. Dan Teknol. Terap., vol. 8, no. Ritektra 8, pp. 53–63, 2018.

J. Ritonga and D. Suryana, “Perbandingan Kecepatan Konvergensi Akar Persamaan Non Linier Metode Titik Tetap dengan Metode Newton Raphson Menggunakan Matlab,” Inf. (Jurnal Inform. dan Sist. Informasi), vol. 11, no. 2, pp. 51–64, 2019, doi: https://doi.org/10.37424/informasi.v11i2.17.

H. Y. Salwa, et al., “Perbandingan Metode Newton Midpoint Halley, Metode Olver dan Metode Chabysave Dalam Penyelesaian Akar-Akar Persamaan Non-Linear,” Indones. J. Eng., vol. 3, no. 1, pp. 1–15, 2022.

W. Megarani, D. Aziz, A. Amanto, and L. Zakaria, “Algoritma Penyelesaian Persamaan Nonlinear Fuzzy dengan Metode Modifikasi Newton-Raphson,” Siger, vol. 1, no. 2, pp. 63–69, 2020, doi: http://dx.doi.org/10.23960%2Fjsm.v1i2.2676.

A. S. H. Ong, “PenerapanMetode Newton Raphson Untuk Pencarian Akar Pada Fungsi Kompleks,” J. Sci. Technol. Trop., vol. 5, no. 1, p. 3, 2009, doi: https://doi.org/10.15548/jostech.v3i1.5685.

I. A. E. Rahayuni, K. Dharmawan, and L. P. I. Harini, “Perbandingan Keefisienan Metode Newton-Raphson, Metode Secant, Dan Metode Bisection Dalam Mengestimasi Implied Volatilities Saham,” E-Jurnal Mat., vol. 5, no. 1, p. 1, 2016, doi: https://doi.org/10.24843/MTK.2016.v05.i01.p113.

D. Ferrari et al., “Menguji Keefisienan Metode Newton-Raphson, Metode Secant, dan Metode Bisection dalam Memprediksi Implied Volatilities Saham PT. Bank Central Asia Tbk,” J. Komput. dan Teknol. Inf., vol. 1, no. 1, pp. 1–7, 2023, doi: https://doi.org/10.26714/.v1i1.11287.

A. Chauhan, “A Study of Modified Newton-Raphson Method,” J. Univ. Shanghai Sci. Technol., vol. 23, no. 8, pp. 129–134, 2021, doi: https://doi.org/10.51201/jusst/21/08359.

J. Juhari, “On the Modification of Newton-Secant Method in Solving Nonlinear Equations for Multiple Zeros of Trigonometric Function,” CAUCHY J. Mat. Murni dan Apl., vol. 7, no. 1, pp. 84–96, Nov. 2021, doi: https://doi.org/10.18860/ca.v7i1.12934.

T. J. McDougall and S. J. Wotherspoon, “A simple modification of Newton’s method to achieve convergence of order 1+ √2,” Appl. Math. Lett., vol. 29, pp. 20–25, Mar. 2014, doi: https://doi.org/10.1016/j.aml.2013.10.008.

D. Wang and Z. Zhang, “High-efficiency nonlinear dynamic analysis for joint interfaces with Newton–Raphson iteration process,” Nonlinear Dyn., vol. 100, no. 1, pp. 543–559, 2020, doi: https://doi.org/10.1007/s11071-020-05522-9.

Wartono and R. Rasela, “Modifikasi Varian Metode Newton dengan Orde Konvergensi Tujuh,” J. Sains Mat. dan Stat., vol. 2, no. 2, pp. 32–38, 2016, doi: http://dx.doi.org/10.24014/jsms.v2i2.3136.

Nizam M Y, “Modifikasi Metode Newton-Steffensen Bebas Turunan,” vol. 2, no. November, pp. 390–396, 2015.

P. Batarius, “Nilai Awal Pada Metode Newton-Raphson Yang Dimodifikasi Dalam Penentuan Akar Persamaan,” Pi Math. Educ. J., vol. 1, no. 3, pp. 108–115, 2018, doi: https://doi.org/10.33322/petir.v13i1.893.




DOI: https://doi.org/10.37905/euler.v11i2.23094

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Maxrizal Maxrizal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:


                         EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 Email: euler@ung.ac.id
 +6287743200854 (Call/SMS/WA)
 Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.