Analisis Perencanaan Produksi LPG Menggunakan Pendekatan Forecasting

Resista Vikaliana, Fazar Sutisna

Abstract


Production planning in the oil and gas industry is a key element for operational efficiency and response to changes in market demand. This research focuses on smart and adaptive strategies through the application of two main approaches: forecasting. The purpose of this study is to determine the most suitable forecasting model from the five forecasting models (Simple Exponential Smoothing, Naive Method, Simple Moving Average, Weighted Moving Average, and Exponential Moving Average) to be used in LPG production and calculate the value of forecasting in the next five periods. Using LPG historical data from 2017 to September 2023.  Then the results are compared using forecasting error metrics such as MAPE and RMSE. It was concluded that the Simple Exponential Smoothing model showed a forecasting error value of 21.58% for MAPE and 72764.01 for RMSE. The Naive model has a forecast error value of 20.33% for MAPE and 78044.48 for RMSE. Meanwhile, the Simple Moving Average recorded a forecast error value of 20.28% for MAPE and 64449.76 for RMSE. On the other hand, the Weighted Moving Average shows a percentage error of 16.34% with an RMSE value of 48426.57. Finally, the Exponential Moving Average (EMA) shows an optimal level of accuracy, with a forecast error value of 16.01% for MAPE and 46046.42 for RMSE. Thus, from the five models evaluated, it can be concluded that the Exponential Moving Average (EMA) is the best model for forecasting LPG products, considering the lowest level of accuracy and percentage of forecasting errors. This study identifies the EMA as the best method in forecasting LPG production. The implication is a positive contribution to the accuracy of predictions and planning efficiency.

Keywords


Exponential Moving Average; Forecasting; Forecasting Error; LPG; Production Planning

Full Text:

PDF

References


A. M. Shahin, A. O. Ghallab, dan A. Soliman, “Increasing LPG production by adding volatile hydrocarbons to reduce import gap in Egypt,” J. Pet. Explor. Prod. Technol., vol. 10, no. 8, pp. 3733–3750, 2020, doi: 10.1007/s13202-020-01004-1.

F. A. Reicita, “Analisis Perencanaan Produksi Pada Pt. Armstrong Industri Indonesia Dengan Metode Forecasting Dan Agregat Planning,” J. Ilm. Tek. Ind., vol. 7, no. 3, pp. 160–168, 2020, doi: 10.24912/jitiuntar.v7i3.6340.

M. Gallab, et al., “Risk analysis of maintenance activities in a LPG supply chain with a Multi-Agent approach,” J. Loss Prev. Process Ind., vol. 47, pp. 41–56, 2017, doi: 10.1016/j.jlp.2017.02.026.

W. A. Subakdo dan Y. A. Nugroho, “In-Bound dan Out-Bound Logistic pada Distribusi LPG 3KG di Indonesia,” in Prosiding Seminar Nasional Sains dan Teknologi Fakultas Teknik Universitas Muhammadiyah Jakarta 2016, 2016. pp. 1–10. [Online]. Available at: https://jurnal.umj.ac.id/index.php/semnastek/article/view/749.

S. Assauri, Manajemen Operasi Produksi (Pencapaian Sasaran. Organisasi Berkesinambungan), 3ed. Jakarta, Indonesia: PT Raja Grafindo. Persada, 2016.

R. Haizer Jay, Operational Management. Jakarta, Indonesia: Salemba Empat, 2015.

J. N. A. Aziza, “Perbandingan Metode Moving Average, Single Exponential Smoothing, dan Double Exponential Smoothing Pada Peramalan Permintaan Tabung Gas LPG PT Petrogas Prima Services,” J. Teknol. dan Manaj. Ind. Terap., vol. 1, no. I, pp. 35–41, 2022, doi: 10.55826/tmit.v1ii.8.

S. Sisca et al., Manajemen Operasional. Bandung, Indonesia: Widina Bhakti Persada, 2020.

T. H. Handoko, Dasar – dasar Manajemen Produksi dan Operasi, 1ed. Yogyakarta.: BPFE, 2011.

C. D. Lewis, “Industrial and business forecasting methods,” Borough Green, Sevenoaks, Kent: Butterworth, London, 1982, p. 144.

N. D. Satmoko et al., Manajemen Operasi. Bandung, Indonesia: Widina, 2020.

J. W. Creswell, Research design : qualitative, quantitative, and mixed methods, 4ed. California, USA: Sage Publications, Inc., 2014.

A. Jha, “Qualitative and Quantitative Research Design,” Social Research Methodology., pp. 161–200, 2023. doi: 10.4324/9781032624860-9.

W. G. Hopkins, “Quantitative research design,” 2008.

B. M. Beamon, “Measuring supply chain performance,” Int. J. Oper. Prod. Manag., vol. 19, no. 3, pp. 275–292, 1999, doi: 10.1108/01443579910249714.

J. A. Y. Heizer, B. Render, C. Munson, dan P. Griffin, Operations Management: Sustainability and Supply Chain Management. Pearson, 2020.

J. Heizer, B. Render, dan C. Munsn, Operation Management: Sustainability and Supply Chain Management, 12th ed. Harlow, Essex, England: Pearson Educaton Limited, 2017.

J. Heizer dan B. Render, Manajemen Operasi, 11ed. Salemba Empat, 2016.

D. Long dan P. Tirschwell, International Logistics: Global Supply Chain Management. 2003.




DOI: https://doi.org/10.37905/euler.v12i1.25317

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Resista Vikaliana, Fazar Sutisna

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:


                         EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 Email: euler@ung.ac.id
 +6287743200854 (WhatsApp Only)
 Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.

slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor