The Orthogonal Matrices of O(2) under A Transitive Standard Action of S^1

Edi Kurniadi, Putri Nisa Pratiwi, Aurillya Queency, Kankan Parmikanti

Abstract


In this paper, we study a Lie group action of the matrix Lie group O(2) on S1 the unit sphere  . The research aims to establish the explicit formulas for all entries of  whose action on S1  is transitive. All possibilities matrices of  are given in which the space  is homogeneous. We prove that there are exactly two matrices in  such that  is the homogeneous space. Moreover, the homogeneous spaces  S(n-1) of O(n)   for n>=3  are also discussed.


Keywords


Homogeneous Space; Lie Group Action; Orthogonal Matrix; Unit Sphere

Full Text:

PDF

References


G. Letzter, S. Sahi, and H. Salmasian, “Weyl algebras for quantum homogeneous spaces,” J Algebra, vol. 655, pp. 651–721, Oct. 2024, doi: 10.1016/j.jalgebra.2023.12.023.

E. Stratoglou, A. A. Simoes, A. Bloch, and L. Colombo, “Virtual constraints on Riemannian homogeneous spaces,” IFAC-PapersOnLine, vol. 58, no. 6, pp. 77–82, 2024, doi: 10.1016/j.ifacol.2024.08.260.

A. Abouqateb, M. Boucetta, and C. Bourzik, “Homogeneous spaces with invariant Koszul-Vinberg structures,” Journal of Geometry and Physics, vol. 193, p. 104965, Nov. 2023, doi: 10.1016/j.geomphys.2023.104965.

A. Otal and L. Ugarte, “Six dimensional homogeneous spaces with holomorphically trivial canonical bundle,” Journal of Geometry and Physics, vol. 194, p. 105014, Dec. 2023, doi: 10.1016/j.geomphys.2023.105014.

R. T. Sato Martín de Almagro, “High-order integrators for Lagrangian systems on homogeneous spaces via nonholonomic mechanics,” J Comput Appl Math, vol. 421, p. 114837, Mar. 2023, doi: 10.1016/j.cam.2022.114837.

H. Liu, M.-C. Yue, and A. M.-C. So, “A unified approach to synchronization problems over subgroups of the orthogonal group,” Appl Comput Harmon Anal, vol. 66, pp. 320–372, Sep. 2023, doi: 10.1016/j.acha.2023.05.002.

L. Song, X. Xia, and J. Xu, “A higher-dimensional Chevalley restriction theorem for orthogonal groups,” Adv Math (N Y), vol. 426, p. 109104, Aug. 2023, doi: 10.1016/j.aim.2023.109104.

Y. Xu, “Intertwining operator associated to symmetric groups and summability on the unit sphere,” J Approx Theory, vol. 272, p. 105649, Dec. 2021, doi: 10.1016/j.jat.2021.105649.

T.-H. Miura, “Linear stability and enhanced dissipation for the two-jet Kolmogorov type flow on the unit sphere,” J Funct Anal, vol. 283, no. 8, p. 109607, Oct. 2022, doi: 10.1016/j.jfa.2022.109607.

H. Hacıhabiboğlu, “sphstat: A Python package for inferential statistics on vectorial data on the unit sphere,” SoftwareX, vol. 24, p. 101514, Dec. 2023, doi: 10.1016/j.softx.2023.101514.

T. Inaba, S. Matsumoto, and Y. Mitsumatsu, “Normally contracting Lie group actions,” Topol Appl, vol. 159, no. 5, pp. 1334–1338, Mar. 2012, doi: 10.1016/j.topol.2011.12.012.

O. Goertsches and S. Haghshenas Noshari, “Equivariant formality of isotropy actions on homogeneous spaces defined by Lie group automorphisms,” J Pure Appl Algebra, vol. 220, no. 5, pp. 2017–2028, May 2016, doi: 10.1016/j.jpaa.2015.10.013.

S. A. Antonyan, A. Mata-Romero, and E. Vargas-Betancourt, “Two homotopy characterizations of G-ANR spaces for proper actions of Lie groups,” Topol Appl, vol. 340, p. 108719, Dec. 2023, doi: 10.1016/j.topol.2023.108719.

F.-J. Turiel and A. Viruel, “Smooth actions of connected compact Lie groups with a free point are determined by two vector fields,” Journal of Geometry and Physics, vol. 201, p. 105196, Jul. 2024, doi: 10.1016/j.geomphys.2024.105196.

J. M. Lee, Introduction to Smooth Manifolds, vol. 218. New York, NY: Springer New York, 2012. doi: 10.1007/978-1-4419-9982-5.




DOI: https://doi.org/10.37905/euler.v12i2.27752

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Edi Kurniadi, Putri Nisa Pratiwi, Aurillya Queency, Kankan Parmikanti

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:


                         EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 Email: euler@ung.ac.id
 +6287743200854 (Call/SMS/WA)
 Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.

slot online slot gacor slot