Analisis Kestabilan Lokal pada Model SEIR Patogenesis Frambusia dengan Infeksi Primer-Sekunder dan Tersier

Fahri Alam Lasongke, Juni Wijayanti Puspita, Rina Ratianingsih, Vicya Utami, Salman Salman

Abstract


Yaws is a skin disease characterized by red spots that can worsen if not treated promptly. This disease is caused by the bacteria Treponema Pallidum Pertenue. The symptoms of yaws have five stages, namely the primary stage, primary to secondary latent stage, secondary stage, secondary to tertiary latent stage, and tertiary stage. A mathematical model is one solution to describe the prognosis of yaws disease. Here, the population was divided into 5 sub-populations, namely susceptible sub-population, exposed sub-population, infected sub-population in the primary and secondary stages, infected sub-population in the tertiary stage, and recovered sub-population. The mathematical model of the spread of yaws disease is written as a system of nonlinear differential equations whose stability is analyzed around the critical point. From the system of differential equations, two critical points are obtained which describe the disease-free condition and the endemic condition. In this study, the existence and stability of both critical points can be guaranteed. Furthermore, numerical simulations were conducted using yaws disease data in Indonesia. Simulation results show that the transmission of yaws disease in Indonesia can be controlled by reducing contact between the primary-secondary infected population and the susceptible population.

Keywords


Yaws; Prognosis; SEIR Model; Local Stability

Full Text:

PDF

References


Kemenkes RI, “Peraturan Menteri Kesehatan Republik Indonesia Nomor 8 Tahun 2017 Tentang Eradikasi Frambusia,” Kementerian Kesehatan RI, pp. 1–142, 2017, [Online]. Available: http://www.who.int/neglected_diseases/diseases/en/%0Ahttp://hukor.kemkes.go.id/uploads/produk_hukum/PMK_No._8_ttg_Eradikasi_Frambusia_.pdf

W. Wanti, E. R. Sinaga, I. Irfan, and M. Ganggar, “Kondisi Sarana Air Bersih, Perilaku Hidup Bersih dan Sehat Terhadap Frambusia pada Anak-anak,” Kesmas Natl. Public Heal. J., vol. 8, no. 2, p. 66, 2013, doi: 10.21109/kesmas.v8i2.345.

M. R. Amin, A. Basher, M. F. Zaman, and M. A. Faiz, “Global Eradication of Yaws : Neglected Disease With Research Priority,” J Med., vol. 10, pp. 109–114, 2009, doi: 10.3329/jom.v10i2.2825.

A. A. Sudirman, D. Modjo, W. S. Piola, and L. Ali, “Skrining dan Edukasi Pencegahan Frambusia di SDN 10 Kwandang Kabupaten Gorontalo Utara,” J. Kreat. Pengabdi. Kpd. Masy., vol. 6, no. 1, pp. 68–79, 2023, doi: 10.33024/jkpm.v6i1.8027.

R. Indra Boedisusanto et al., “Analisis Kondisi Rumah, Sosial Ekonomi Dan Perilaku Sebagai Faktor Risiko Kejadian Frambusia Di Kota Jayapura Tahun 2007,” Ber. Kedokt. Masy., vol. 25, no. 2, pp. 82–87, 2009, doi: 10.22146/bkm.3568.

Y. G. . Tanaefeto, Nursalam, and E. Ulfiana, “Analisis Faktor Yang Mempengaruhi Perilaku Pencegahan Penyakit Frambusia,” Keperawatan, vol. 2, pp. 81–90, 2014, doi: 10.20473/ijchn.v2i2.11928.

E. Destra, N. Anggraeni, A. B. Prakoso, R. H. Ashil, J. Jamaludin, and M. J. Juliastina, “Skrining Dan Edukasi Pencegahan Frambusia Puskesmas Kupu Di Sdn 01 Lawatan Kabupaten Tegal,” J. Pengabdi. Kpd. Masy., vol. 2, no. 2, pp. 01–08, 2023, doi: 10.54066/abdimas.v2i2.287.

Musarifa, Hikmah, and Fardinah, “Analisis Model Matematika SEITR Pada Penyakit Cacar Air,” J. Math. Theory Appl., vol. 3, no. 2, pp. 45–52, 2021, doi: 10.31605/jomta.v3i2.1372.

W. D. Sihotang, C. C. Simbolon, J. Hartiny, D. Tindaon, and L. P. Sinaga, “Analisis Kestabilan Model SEIR Penyebaran Penyakit Campak dengan Pengaruh Imunisasi dan Vaksin MR,” J. Mat. Stat. dan Komputasi, vol. 16, no. 1, pp. 107–113, 2019, doi: 10.20956/jmsk.v16i1.6594.

F. Azzahrah, “Model Matematika Transmisi Penyakit Frambusia Sebagai Vektor Pembawa,” Universitas Gadjah Mada, 2024.

A. Alhassan, S. Musa, A. Momoh, and S. Yusuf, “Mathematical Model for the Transmission Dynamics and Control of of Yaws Infection,” Conflu. Univ. J. Sci. Technol., vol. 1, no. 1, pp. 36–49, 2024, doi: 10.5455/cujostech.240705.

S. Mushayabasa, C. P. Bhunu, C. Webb, and M. Dhlamini, “A mathematical model for assessing the impact of poverty on yaws eradication,” Appl. Math. Model., vol. 36, no. 4, pp. 1653–1667, 2012, doi: 10.1016/j.apm.2011.09.022.

C. Neuhauser, Calculus for Biology and Madicine, 3 Edition. Minnesota: Pearson Education, 2000.

H. Anton and C. Rorres, Elementary Linear Algebra, 11th ed. Hoboken: Wiley, 2013.

J. Wang, G. Adhikari, N. Tsukiji, and H. Kobayashi, “Analysis and design of operational amplifier stability based on Routh-Hurwitz stability criterion,” IEEJ Trans. Electron. Inf. Syst., vol. 138, no. 12, pp. 1517–1528, 2018, doi: 10.1541/ieejeiss.138.1517.

A. P. Aditya, R. Ratianingsih, and J. W. Puspita, “Kestabilan Model Matematika Penularan Penyakit Gonorrhoeae,” J. Ilm. Mat. Dan Terap., vol. 14, no. 2, pp. 232–241, 2017, doi: 10.22487/2540766x.2017.v14.i2.9025.

I. Samidah et al., “Edukasi Dan Pemeriksaan Penyakit Kusta Dan Frambusia Di RT 27 Dusun Besar Wilayah Kerja Puskesmas Jembatan Kecil,” J. Dehasen Untuk Negeri, vol. 2, no. 1, pp. 79–84, 2023, doi: 10.37676/jdun.v2i1.2872.

O. Diekmann, J. A. P. Heesterbeek, and J. A. Metz, “On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations,” J. Math. Biol., no. 28, pp. 365–382, 1990, doi: 10.1007/BF00178324.

R. Resmawan and N. Nurwan, ``Konstruksi Bilangan Reproduksi Dasar pada Model Epidemik SEIRS-SEI Penyebaran Malaria dengan Vaksinasi dan Pengobatan,'' J. Mat. Integratif., vol. 13, no. 2, pp. 105--114, 2017, doi: 10.24198/jmi.v13.n2.12332.105-114.

K. Kasbawati, “Penentuan Nilai R0 dengan Menggunakan Operator The Next Generation,” J. Mat. Stat. dan Komputasi2, vol. 6, no. 1, pp. 56–64, 2009, doi: 10.20956/jmsk.v6i1.4094.

C. Castillo-Chavez, Z. Feng, and W. Huang, “On the Computation of R 0 and its Role on Global Stability,” no. May, pp. 229–250, 2002, doi: 10.1007/978-1-4757-3667-0_13.




DOI: https://doi.org/10.37905/euler.v12i2.27847

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Fahri Alam Lasongke, Juni Wijayanti Puspita, Rina Ratianingsih, Vicya Utami, Salman

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:


                         EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 Email: euler@ung.ac.id
 +6287743200854 (WhatsApp Only)
 Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.

slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor