Perbandingan Fuzzy Time Series Chen dan Cheng untuk Peramalan Harga Beras di Kabupaten Banyumas

Dian Kartika Sari, Aminatus Sa'adah

Abstract


Indonesia is mostly an agricultural country. Most people here make a living from farming. Rice is a major crop in Indonesia. The price of rice is very important to the economy, especially in farming areas like Banyumas. Fluctuating rice prices can affect the economic lives of both farmers and consumers in the region. The rapid fluctuation in rice prices and the uncertainty of future prices demand the need for rice price forecasting. This study uses fuzzy time series to forecast rice prices. The prediction models used are the Chen model and the Cheng model. To calculate the accuracy of the models, MAPE calculations are employed. Based on the results, the MAPE value for the Chen model is 0.957539%, and for the Cheng model, it is 0.477921%. The results indicate that the accuracy of the Cheng model is higher than that of the Chen model, meaning that the Cheng model is better suited for forecasting rice prices in Banyumas Regency.

Keywords


Rice pricese; Forecasting; FTS Cheng; FTS Chen; MAPE

Full Text:

PDF

References


BPS, Berita Resmi Statistik 2023. Badan Pusat Statistik, 2023.

A. C. Vayuanita and W. Sulistijanti, “Peramalan Hasil Produksi Padi Di Provinsi Jawa Tengah Menggunakan Metode Hybrid Sarima-Fuzzy Time Series Chen,” AGRITECH: Jurnal Ilmu-Ilmu Pertanian, vol. XXV, no. 2, pp. 194–204, 2023, doi: 10.30595/agritech.v25i2.21835.

M. Syafi’i, lilis H. Hasibuan, R. Putri, and L. Suriani, “Peramalan Harga Eceran Rata-Rata Beras Dengan Metode Trend,” Majamath: Jurnal Matematika dan Pendidikan Matematika, vol. 6, no. 1, pp. 23–32, 2023, [Online]. Available: https://sumbar.bps.go.id/.

E. Tarigan, M. Balqis, T. Hutapea, and D. Sihombing, “Peramalan Harga Beras di Indonesia Dengan ARIMA,” SEPREN: Journal of Mathematics Education and Applied, vol. 05, no. 02, pp. 117–126, 2024, doi: 10.36655/sepren.v4i1.

M. A. Ramadhani, B. H. Mustawinar, D. R. Arifanti, and Yulianti, “Prediksi Harga Minyak Dunia Dengan Fuzzy Time Series,” Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika , vol. 7, no. 1, pp. 305–309, 2024, doi: 10.30605/proximal.v5i2.3471.

S. Rusdiana, D. Febriana, I. Maulidi, and V. Apriliani, “Comparison Of Weighted Markov Chain And Fuzzy Time Series-Markov Chain Methods In Air Temperature Prediction In Banda Aceh City,” BAREKENG: Journal of Mathematics and Its Applications, vol. 17, no. 3, pp. 1301–1312, Sep. 2023, doi: 10.30598/barekengvol17iss3pp1301-1312.

C. CHENG, G. CHENG, and J. WANG, “Multi-attribute fuzzy time series method based on fuzzy clustering,” Expert Syst Appl, vol. 34, no. 2, pp. 1235–1242, Feb. 2008, doi: 10.1016/j.eswa.2006.12.013.

S.-M. Chen, “Forecasting enrollments based on fuzzy time series,” Fuzzy Sets Syst, vol. 81, no. 3, pp. 311–319, Aug. 1996, doi: 10.1016/0165-0114(95)00220-0.

S. R. Singh, “A Simple Time Variant Method For Fuzzy Time Series Forecasting,” Cybern Syst, vol. 38, no. 3, pp. 305–321, Mar. 2007, doi: 10.1080/01969720601187354.

Arnita, N. Afnisah, and F. Marpaung, “A Comparison of the Fuzzy Time Series Methods of Chen, Cheng and Markov Chain in Predicting Rainfall in Medan,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Mar. 2020. doi: 10.1088/1742-6596/1462/1/012044.

S. A. Putri, Junaidi, and I. Setiawan, “Application of The Fuzzy Time Series Chen Model In Forecasting The Rupiah Exchange Rate Against The Us Dollar (USD),” Journal of Statistical Methods and Data Science, vol. 1, no. 2, pp. 9–20, 2023.

S.-M. Chen and C.-C. Hsu, “A New Method to Forecast Enrollments Using Fuzzy Time Series,” International Journal of Applied Science and Engineering, vol. 2, no. 3, pp. 234–244, 2004.

F. Andika, N. Nurviana, and R. P. Sari, “Perbandingan Model Chen dan Lee pada Metode Fuzzy Time Series untuk Peramalan Nilai Tukar Petani (NTP) di Provinsi Aceh,” Jurnal Sains Matematika dan Statistika, vol. 10, no. 1, p. 71, Mar. 2024, doi: 10.24014/jsms.v10i1.23463.

A. P. Andini and F. Muliani, “Fuzzy Time Series Chen Untuk Forecasting Hasil Produksi Tebu Di Kabupaten Langkat,” Jurnal Sains Matematika dan Statistika, vol. 10, no. 1, p. 47, Feb. 2024, doi: 10.24014/jsms.v10i1.23375.

Rahmawati, M. R. R. Putra, and F. Muttakin, “Prediksi Jumlah Pengunjung Perpustakaan Daerah Kabupaten Batang dengan Menggunakan Metode Fuzzy Time Series Chen-Hsu,” Journal Of Mathematics UNP, vol. 8, no. 1, pp. 110–119, 2023.

E. N. Sofiyanti, S. Ulinuha, R. Okiyanto, M. Al Haris, and R. Wasono, “Peramalan Harga Emas Menggunakan Metode Fuzzy Time Series Chen dalam Investasi untuk Meminimalisir Risko,” Journal of Mathematics, Cpmputations, and Statistics, vol. 7, no. 1, pp. 55–66, 2024, [Online]. Available: http://www.ojs.unm.ac.id/jmathcos




DOI: https://doi.org/10.37905/euler.v12i2.28012

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Dian Kartika Sari, Aminatus Sa'adah

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:


                         EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 Email: euler@ung.ac.id
 +6287743200854 (WhatsApp Only)
 Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.

slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor