Model Geographically Weighted Regression Menggunakan Adaptive Gaussian Kernel untuk Pemetaan Faktor Penyebab Stunting

Febi Vianti, Hani Khaulasari, Yuniar Farida, Cicik Swantika, Havid Efendi

Abstract


Stunting is a child growth disorder that is evident from a lack of height for age. Jember Regency has a stunting prevalence rate of 34.90% in 2022, making it the region with the highest stunting cases in East Java. The purpose of this research is to map the factors that influence stunting in Jember Regency with a spatial analysis approach. The method applied in this study is Geographically Weighted Regression (GWR) to analyze the spatial relationship between predictors and responses. GWR uses an optimal kernel to determine the spatial weights based on distance accurately, as well as the AIC and  goodness criteria to calculate the goodness of the model. The research variables include the number of stunting cases in Jember Regency as the response variable (Y), and the predictor variables (X) are chronic energy deficiency pregnant women (), anemic pregnant women (), exclusive breastfeeding (), proper sanitation (), pregnant women consuming TTD at least 90 days (), complete basic immunization (), and wasting (). The results of the study using the adaptive gaussian kernel with the minimum CV compared to other kernels can improve accuracy, so it can be applied to data analysis.  The GWR model obtained an accuracy of 80.59% and AIC 360.  indicates the ability to explain 80.59% of the variability of the response data, and the AIC value is 360, which reflects the efficiency and suitability of the model to spatial data. From the GWR parameters, 14 groups were formed where there are several different factors in each area in the sub-districts in Jember Regency.

Keywords


Geographically Weighted Regression; Adptive Gaussian; Stunting

Full Text:

PDF

References


E. S. Sakti, M. R. Makful, and R. Dewi, "Analisis Spasial Prioritas Penanganan Stunting Di Provinsi Aceh Tahun 2021" J. Mutiara Kesehat. Masy., vol. 8, no. 1, pp. 10-23, 2023, doi: 10.51544/jmkm.v8i1.3856.

Z. Wardani, D. Sukandar, Y. F. Baliwati, and H. Riyadi, "Sebuah Alternatif: Indeks Stunting Sebagai Evaluasi Kebijakan Intervensi Balita Stunting Di Indonesia" Gizi Indones., vol. 44, no. 1, pp. 21-30, 2021, doi: 10.36457/gizindo.v44i1.535.

Kemenkes BKPK, "Survei Kesehatan Indonesia (SKI)" Kemenkes RI, 2023. https://www.badankebijakan.kemkes.go.id/ski-2023-dalam-angka/ (accessed Nov. 03, 2024).

BKKBN, "Kebijakan dan Strategi Percepatan Penurunan Stunting di Indonesia" 2021. https://lms-elearning.bkkbn.go.id/pluginfile.php/18037/mod_resource/content/1/4. Buku Kebijakan Dan Strategi Percepatan Penurunan Stunting Di Indonesia.pdf (accessed Nov. 01, 2024).

Kemenkes RI, "Status Gizi SSGI 2022" BKPK Kemenkes RI, 2022. https://r.search.yahoo.com/_ylt=Awr1TXopzHJm13UHIgDLQwx.;_ylu=Y29sbwNzZzMEcG9zAzQEdnRpZAMEc2VjA3Ny/RV=2/RE=1718828202/RO=10/RU=https%3A%2F%2Fpromkes.kemkes.go.id%2Fpub%2Ffiles%2Ffiles52434Buku%2520Saku%2520SSGI%25202022%2520rev%2520210123.pdf/RK=2/RS=ua_K (accessed Nov. 03, 2024).

I. M. Mufidah and H. Basuki, "Analisis Regresi Linier Berganda Untuk Mengetahui Faktor Yang Mempengaruhi Kejadian Stunting Di Jawa Timur" Indones. Nurs. J. Educ. Clin., vol. 3, no. 3, pp. 51-59, 2023, doi: -.

L. O. A. R. Halidun and A. R. Rachman, "Keterkaitan Spasial Antarwilayah Berdasarkan Potensi Ekonomi (Studi Kasus: Kawasan Mamminasata)" J. Wil. dan Kota Marit., vol. 7, pp. 295-303, 2019, doi: https://doi.org/10.20956/jwkm.v7i0.1239.

A. Fadliana and P. P. Darajat, "Pemetaan Faktor Risiko Stunting Berbasis Sistem Informasi Geografis Menggunakan Metode Geographically Weighted Regression" J. IkraiTth-Informatika, vol. 5, no. 3, pp. 91-102, 2021, doi: -.

R. S. Sari, Rida Purnama, Winanda, "Pemodelan Stunting pada Balita di Indonesia Menggunakan Geographically Weighted Regression (GWR)" J. Math. UNP, vol. 8, no. 3, pp. 106-116, 2023, doi: http://dx.doi.org/10.24036/unpjomath.v8i3.15057.

D. S. Esther, A. Andini, R. D. Yanti, and N. Hidayati, "Pemodelan Konsumsi Beras Menggunakan Geographically Weighted Regression (Gwr)" J. Ilm. Sain dan Teknol., vol. 1, no. 3, pp. 27-36, 2023, doi: https://doi.org/10.572349/scientica.v1i3.353.

M. R. Putri, T. Y. Handayani, and D. P. Sari, "Pengaruh Sanitasi Lingkungan Terhadap Kejadian Stunting Pada Balita" J. Kesehat. Mercusuar, vol. 5, no. 1, pp. 63-68, 2022, doi: 10.36984/jkm.v5i1.260.

T. Taswin, L. O. M. Taufiq, W. O. A. Damayanti, and M. Subhan, "Pemberian ASI Eksklusif dan Imunisasi Dasar dengan Kejadian Stunting Pada Balita" J. Kebidanan Malakbi, vol. 4, no. 1, p. 51, 2023, doi: 10.33490/b.v4i1.789.

M. Karjono and L. D. Erna, "Anemia dan Kurang Energi Kronik (KEK) sebagai Faktor Risiko Terjadinya Stunting di Wilayah Kerja UPT Blud Puskesmas Senaru Kabupaten Lombok Utara" J. Ilm. Sangkareang Mataram, vol. 8, no. 1, pp. 76-79, 2021, doi: -.

N. Fentiana, F. Tambunan, and D. Ginting, "Stunting, Pemeriksaan Kehamilan Dan Konsumsi Tablet Tambah Darah Ibu Hamil Di Indonesia: Analisis Data Riskesdas 2013" J. Keperawatan Suaka Insa., vol. 7, no. 2, pp. 133-138, 2022, doi: 10.51143/jksi.v7i2.351.

S. Thurstans et al., "The relationship between wasting and stunting in young children: A systematic review." Matern. Child Nutr., vol. 18, no. 1, p. e13246, Jan. 2022, doi: 10.1111/mcn.13246.

F. Cholid, D. Trishnanti, and H. Al Azies, "Pemetaan Faktor-Faktor yang Memengaruhi Stunting pada Balita dengan Geographically Weighted Regression(GWR)" in SEMNAKes, 2019, pp. 156-165.

F. Hariani, H. Herniyati, B. I. Hardani, I. D. Amli, and S. H. Hastuti, "Pemodelan Stunting di Lombok Utara: Studi Geographically Weighted Regression" J. Sains Mat. dan Stat., vol. 10, no. 2, pp. 216-226, 2024, doi: 10.24014/jsms.v10i2.28683.

T. Siswati, Stunting, 1st ed. Yogyakarta: Husada Mandiri, 2018.

Y. Dong, "Descriptive Statistics and Its Applications" Highlights Sci. Eng. Technol., vol. 47, pp. 16-23, 2023, doi: 10.54097/hset.v47i.8159.

M. Sriningsih, D. Hatidja, and J. D. Prang, "Penanganan Multikolinearitas Dengan Menggunakan Analisis Regresi Komponen Utama Pada Kasus Impor Beras Di Provinsi Sulut" J. Ilm. Sains, vol. 18, no. 1, p. 18, 2018, doi: 10.35799/jis.18.1.2018.19396.

H. Basri, "Pemodelan Regresi Berganda Untuk Data Dalam Studi Kecerdasan Emosional" Didakt. J. Kependidikan, vol. 12, no. 2, pp. 103-116, 2019, doi: 10.30863/didaktika.v12i2.179.

F. Adrian, Y. Yundari, and S. Aprizkiyandari, "Geographically Weighted Ridge Regression Modeling At the Open Unemployment Rate in West Kalimantan" J. Difer., vol. 5, no. 2, pp. 83-95, 2023, doi: 10.35508/jd.v5i2.12063.

K. Khariyani, Angeliya Milla, and Kismiantini and E. P. and Setiawan, "Analisis Faktor-Faktor Yang Memengaruhi Jumlah Penderita Tuberkulosis Menggunakan Geographically Weighted Regression Di Provinsi Jawa Timur" in Prosiding Seminar Nasional Matematika dan Statistika, 2022, pp. 16-26.

S. S. Shapiro and M. B. Wilk, "An Analysis of Variance Test for Normality (Complete Samples)" Biometrika, vol. 52, no. 3/4, p. 591, 1965, doi: 10.2307/2333709.

U. Safitri and L. and Amaliana, "Model Geographically Weighted Regression dengan Fungsi Pembobot Adaptive dan Fixed Kernel pada Kasus Kematian Ibu di Jawa Timur" J. Stat. dan Apl., vol. 5, no. 2, pp. 208-220, 2021, doi: 10.21009/jsa.05209.

Ridhawati, Suyitno, and Wasono, "Model Geographically Weighted Poisson Regression (GWPR) dengan Fungsi Pembobot Adaptive Gaussian (Studi Kasus : Angka Kematian Ibu (AKI) di 24 Kab/Kota Kalimantan Timur dan Kalimantan Barat Tahun 2017)" J. EKSPONENSIAL, vol. 12, no. 2, pp. 143-152, 2021, doi: https://doi.org/10.30872/eksponensial.v12i2.807.

H. Ismanto, "Pemodelan Geographically Weighted Poisson Regression (GWPR) Dengan Pembobot Adaptive Gaussian Kernel Dan Adaptive Bisquare Kernel Pada Angka Kematian Ibu (Aki)" Muhammadiyah University, 2019.

Y. Taek, R. Dwi Bekti, K. Suryowati, and J. Statistika, "Penerapan Model Geograpgically Weighted Regression (GWR) Menggunakan Fungsi Pembobot Adaptive Kernel Gaussian Dan Adaptive Kernel Bisquare Pada Tingkat Pengangguran Terbuka Di Pulau Papua" J. Stat. Ind. dan Komputasi, vol. 08, no. 2, pp. 84-101, 2023, doi: https://doi.org/10.34151/statistika.v8i2.4459.

I. N. Luku and K. Suryowati, "Aplikasi Metode Geographically Weighted Regression Principal Component Analysis (GWRPCA) Pada Pemodelan Laju Pertumbuhan Produk Domestik Regional Bruto Di Provinsi Nusa Tenggara Timur" J. Stat. Ind. dan Komputasi, vol. 07, no. 2, pp. 12-22, 2022, doi: https://doi.org/10.34151/statistika.v7i2.

Erlando, "Dampak Gaya Kepemimpinan Otoriter terhadap Kinerja Pegawai: Studi Kasus pada Kantor Dinas Pendidikan Provinsi Sulawesi" JIMS J. Ilm. Mhs., vol. 1, no. 1, pp. 20-30, 2023, doi: 10.37531/10.51263/jameb.v7i2.

R. Wahyudi, Y. Fauzi, and J. Rizal, "Analisis Kemiskinan Ekstrem Provinsi Bengkulu Menggunakan Metode Geographically Weighted Regression (Gwr) Dengan Pembobot Adaptive Gaussian Kernel Dan Adaptive Bi-Square" J. Math. UNP, vol. 8, no. 2, p. 134, 2023, doi: 10.24036/unpjomath.v8i2.14914.




DOI: https://doi.org/10.37905/euler.v12i2.28072

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Febi Vianti, Hani Khaulasari, Yuniar Farida, Cicik Swantika, Havid Efendi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:


 EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 Email: euler@ung.ac.id
 +6287743200854 (WhatsApp Only)
 Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.