Perbandingan Akurasi Metode Autoregressive Integrated Moving Average dan Geometric Brownian Motion untuk Peramalan Harga Saham Indonesia

Aldan Maulana Hamdani, Fery Widhiatmoko, Sa'adatul Fitri

Abstract


Investment is an activity of managing sources of funds with the goal of increasing profits within a certain period of time. The number of investors in the capital market, especially stock investments continue to increase. Stock movements result in returns that investors can obtain. Randomly fluctuating share prices make it difficult for investors to forecast share prices. This research helps investors in forecasting stock price movements based on PT. Gudang Garam Tbk. (GGRM) for the period 2022. This research aims to determine the level accuracy of the Geometric Brownian Motion (GBM) and Autoregressive Integrated Moving Average (ARIMA) methods in forecasting stock price movements. The accuracy level of the Mean Absolute Percentage Error (MAPE) for the GBM method is 1.68% and the ARIMA method forecasting results is 3.37%. The MAPE value of both methods is less than 10\%, so it can be said that both methods are best fitting and have a high level of accuracy in forecasting stock price movements. The GBM method is better at forecasting stock prices because it is more realistic for financial asset price models because it includes volatility in the model.

Keywords


ARIMA; Forecasting; GBM; Stock

Full Text:

PDF

References


Bursa Efek Indonesia, Produk Saham, 2024. [Online]. Available: https://www.idx.co.id/id/produk/saham. [Accessed: Des. 20, 2024].

Fauziyah and W. A. Pratomo, "Analisis peramalan harga saham dalam keputusan investasi pada perusahaan perkebunan di PT Bursa Efek Indonesia," Jurnal Ekonomi dan Keuangan, vol. 2, no. 1, 2014.

N. Hasan, F. A. O. Pelleng, and J. V. Mangindaan, "Analisis capital asset pricing model (CAPM) sebagai dasar pengambilan keputusan berinvestasi saham (studi pada indeks bisnis di Bursa Efek Indonesia)," Jurnal Administrasi Bisnis, vol. 8, no. 1, pp. 36, 2019, doi: 10.35797/jab.8.1.2019.23498.36-43.

Otoritas Jasa Keuangan, "Pasar Modal Indonesia Tumbuh di Tengah Dinamika Global," Penutupan Perdagangan Bursa Efek Indonesia, 2024. [Online]. Available: https://ojk.go.id/id/. [Accessed: Des. 20, 2024].

H. D. Bhakti, "Prediksi harga saham subsektor farmasi menggunakan geometric brownian motion," Jurnal Media Informatika Budidarma, vol. 6, no. 1, pp. 395-403, 2022, doi: 10.30865/mib.v6i1.3415.

W. Y. Rusyida and V. Y. Pratama, "Prediksi harga saham Garuda Indonesia di tengah pandemi COVID-19 menggunakan metode ARIMA," Journal Mathematics and Mathematics Education, vol. 2, no. 1, pp. 73-81, 2020, doi: 10.21580/square.2020.2.1.5626.

D. A. Rezaldi, "Peramalan metode ARIMA data saham PT. Telekomunikasi Indonesia," Universitas Negeri Semarang, 2021.

D. M. Putri and L. H. Hasibuan, "Penerapan gerak Brown geometrik pada data saham PT. Antam," Map Math. Appl. Journal, vol. 2, no. 2, pp. 1–10, 2020, doi: 10.15548/map.v2i2.2258.

W. Sulistyawati and S. Trinuryono, "Analisis (deskriptif kuantitatif) motivasi belajar siswa dengan model blended learning di masa pandemi COVID-19," Jurnal Kadikma, vol. 13, no. 2, pp. 68-73, 2022.

D. A. I. Maruddani and D. Ispriyanti, "Pemodelan harga saham dengan geometric brownian motion dan value at risk PT Ciputra Development Tbk," Jurnal Gaussian, vol. 6, no. 2, pp. 261-270, 2017, doi: 10.14710/j.gauss.6.2.261-270.

S. G. Makridakis, S. C. Wheelwright, and R. J. Hyndman, Forecasting: Methods and Application, 3rd ed., Wiley and Sons Inc., New York, 1998.

G. E. P. Box and G. M. Jenkins, Time Series Analysis, Holden Day, San Francisco, 1976.

A. Lusiana and P. Yuliarty, "Penerapan metode peramalan (forecasting) pada permintaan atap di PT X," Jurnal Industri Inovatif, 2020, doi: 10.36040/industri.v10i1.2530.

D. C. Montgomery, C. L. Jennings, and M. Kulahci, Introduction to Time Series Analysis and Forecasting, Wiley Series in Probability and Statistics, Wiley-Interscience, Hoboken, N.J., 2008.

J. D. Cryer and K. Chan, Time Series Analysis: With Applications in R, 2nd ed., Springer Texts in Statistics, Springer, New York, 2008.

I. Nabillah and I. Ranggadara, "Mean absolute percentage error untuk evaluasi hasil prediksi komoditas laut," Journal of Information System, vol. 5, no. 2, pp. 250-255, 2020, doi: 10.33633/joins.v5i2.3900.




DOI: https://doi.org/10.37905/euler.v13i1.30760

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Aldan Maulana Hamdani, Fery Widhiatmoko, Sa’adatul Fitri

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:


 EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 Email: euler@ung.ac.id
 +6287743200854 (WhatsApp Only)
 Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.