Batas Perturbasi Mutlak Nilai Eigen dari Matriks Normal
Abstract
Keywords
Full Text:
PDFReferences
B. Colbois, A. Girouard, C. Gordon, and D. Sher, “Some recent developments on the Steklov eigenvalue problem,” Rev. Matemática Complut., vol. 37, no. 1, pp. 1–161, Jan. 2024, doi: 10.1007/s13163-023-00480-3.
Y. Chen, C. Cheng, and J. Fan, “Asymmetry helps: Eigenvalue and eigenvector analyses of asymmetrically perturbed low-rank matrices,” Ann. Stat., vol. 49, no. 1, p. 435, Feb. 2021, doi: 10.1214/20-AOS1963.
P. J. Forrester, “Rank 1 perturbations in random matrix theory — A review of exact results,” Random Matrices Theory Appl., vol. 12, no. 04, p. 2330001, Oct. 2023, doi: 10.1142/S2010326323300012.
F. Bünger and A. Seeger, “Perturbation properties of the generalized spectral radius,” Linear Multilinear Algebr., vol. 73, no. 4, pp. 633–648, 2025, doi: https://doi.org/10.1080/03081087.2024.2366951.
A. J. Hoffman and H. W. Wielandt, “The Variation Of The Spectrum Of A Normal Matrix,” in Selected Papers of Alan J Hoffman, World Scientific, 2003, pp. 118–120. doi: 10.1142/9789812796936_0011.
J. Sun, “On the variation of the spectrum of a normal matrix,” Linear Algebra Appl., vol. 246, pp. 215–223, Oct. 1996, doi: 10.1016/0024-3795(94)00354-8.
Y. Song, “A note on the variation of the spectrum of an arbitrary matrix,” Linear Algebra Appl., vol. 342, no. 1–3, pp. 41–46, Feb. 2002, doi: 10.1016/S0024-3795(01)00447-5.
W. Li and W. Sun, “The perturbation bounds for eigenvalues of normal matrices,” Numer. Linear Algebr. with Appl., vol. 12, no. 2–3, pp. 89–94, Mar. 2005, doi: 10.1002/nla.400.
R.-C. Li, Relative perturbation theory:(I) eigenvalue variations. Computer Science Division (EECS), University of California, 1994.
S. C. Eisenstat and I. C. F. Ipsen, “Relative perturbation results for eigenvalues and eigenvectors of diagonalisable matrices,” BIT Numer. Math., vol. 38, no. 3, pp. 502–509, Sep. 1998, doi: 10.1007/BF02510256.
R.-C. Li, “Relative perturbation theory: I. Eigenvalue and singular value variations,” SIAM J. Matrix Anal. Appl., vol. 19, no. 4, pp. 956–982, 1998.
S. C. Eisenstat and I. C. F. Ipsen, “Three Absolute Perturbation Bounds for Matrix Eigenvalues Imply Relative Bounds,” SIAM J. Matrix Anal. Appl., vol. 20, no. 1, pp. 149–158, Jan. 1998, doi: 10.1137/S0895479897323282.
M. Dailey, F. M. Dopico, and Q. Ye, “Relative Perturbation Theory for Diagonally Dominant Matrices,” SIAM J. Matrix Anal. Appl., vol. 35, no. 4, pp. 1303–1328, Jan. 2014, doi: 10.1137/130943613.
Y. Nakatsukasa, “Absolute and relative Weyl theorems for generalized eigenvalue problems,” Linear Algebra Appl., vol. 432, no. 1, pp. 242–248, 2010, doi: https://doi.org/10.1016/j.laa.2009.08.001.
P. G. Santos, Diagonalization in Formal Mathematics. in BestMasters. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. doi: 10.1007/978-3-658-29111-2.
DOI: https://doi.org/10.37905/euler.v13i2.31084
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Dewi Ika Ainurrofiqoh, Merysa Puspita Sari, Sailah Ar Rizka, Nadia Kholifia

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:
EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI |
![]() | Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia |
![]() | Email: [email protected] |
![]() | +6287777-586462 (WhatsApp Only) |
![]() | Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. |