Batas Perturbasi Mutlak Nilai Eigen dari Matriks Normal

Dewi Ika Ainurrofiqoh, Merysa Puspita Sari, Sailah Ar Rizka, Nadia Kholifia

Abstract


The eigenvalue problem in matrices is an important topic in numerical computation, particularly in analyzing the sensitivity of eigenvalues to disturbances or perturbations. This study discusses the absolute perturbation bounds on the eigenvalues of a matrix, focusing on normal matrices and their relationship to the condition of normal matrices. Based on existing theorems, the absolute perturbation bounds are presented in various forms involving the Frobenius norm and the condition number of the matrix eigenvectors. This research provides a detailed discussion of results concerning the absolute perturbation bounds on eigenvalues and their applications to normal matrices. Ultimately, an important result on the error bounds of eigenvalues in the case of normal matrices affected by perturbations is fully explained, proving the connection between the absolute error bound and the Frobenius norm of the perturbations.

Keywords


Eigenvalues; Perturbation Bounds; Normal Matrices; Frobenius Norm; Eigenvalue Error

Full Text:

PDF

References


B. Colbois, A. Girouard, C. Gordon, and D. Sher, “Some recent developments on the Steklov eigenvalue problem,” Rev. Matemática Complut., vol. 37, no. 1, pp. 1–161, Jan. 2024, doi: 10.1007/s13163-023-00480-3.

Y. Chen, C. Cheng, and J. Fan, “Asymmetry helps: Eigenvalue and eigenvector analyses of asymmetrically perturbed low-rank matrices,” Ann. Stat., vol. 49, no. 1, p. 435, Feb. 2021, doi: 10.1214/20-AOS1963.

P. J. Forrester, “Rank 1 perturbations in random matrix theory — A review of exact results,” Random Matrices Theory Appl., vol. 12, no. 04, p. 2330001, Oct. 2023, doi: 10.1142/S2010326323300012.

F. Bünger and A. Seeger, “Perturbation properties of the generalized spectral radius,” Linear Multilinear Algebr., vol. 73, no. 4, pp. 633–648, 2025, doi: https://doi.org/10.1080/03081087.2024.2366951.

A. J. Hoffman and H. W. Wielandt, “The Variation Of The Spectrum Of A Normal Matrix,” in Selected Papers of Alan J Hoffman, World Scientific, 2003, pp. 118–120. doi: 10.1142/9789812796936_0011.

J. Sun, “On the variation of the spectrum of a normal matrix,” Linear Algebra Appl., vol. 246, pp. 215–223, Oct. 1996, doi: 10.1016/0024-3795(94)00354-8.

Y. Song, “A note on the variation of the spectrum of an arbitrary matrix,” Linear Algebra Appl., vol. 342, no. 1–3, pp. 41–46, Feb. 2002, doi: 10.1016/S0024-3795(01)00447-5.

W. Li and W. Sun, “The perturbation bounds for eigenvalues of normal matrices,” Numer. Linear Algebr. with Appl., vol. 12, no. 2–3, pp. 89–94, Mar. 2005, doi: 10.1002/nla.400.

R.-C. Li, Relative perturbation theory:(I) eigenvalue variations. Computer Science Division (EECS), University of California, 1994.

S. C. Eisenstat and I. C. F. Ipsen, “Relative perturbation results for eigenvalues and eigenvectors of diagonalisable matrices,” BIT Numer. Math., vol. 38, no. 3, pp. 502–509, Sep. 1998, doi: 10.1007/BF02510256.

R.-C. Li, “Relative perturbation theory: I. Eigenvalue and singular value variations,” SIAM J. Matrix Anal. Appl., vol. 19, no. 4, pp. 956–982, 1998.

S. C. Eisenstat and I. C. F. Ipsen, “Three Absolute Perturbation Bounds for Matrix Eigenvalues Imply Relative Bounds,” SIAM J. Matrix Anal. Appl., vol. 20, no. 1, pp. 149–158, Jan. 1998, doi: 10.1137/S0895479897323282.

M. Dailey, F. M. Dopico, and Q. Ye, “Relative Perturbation Theory for Diagonally Dominant Matrices,” SIAM J. Matrix Anal. Appl., vol. 35, no. 4, pp. 1303–1328, Jan. 2014, doi: 10.1137/130943613.

Y. Nakatsukasa, “Absolute and relative Weyl theorems for generalized eigenvalue problems,” Linear Algebra Appl., vol. 432, no. 1, pp. 242–248, 2010, doi: https://doi.org/10.1016/j.laa.2009.08.001.

P. G. Santos, Diagonalization in Formal Mathematics. in BestMasters. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. doi: 10.1007/978-3-658-29111-2.




DOI: https://doi.org/10.37905/euler.v13i2.31084

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Dewi Ika Ainurrofiqoh, Merysa Puspita Sari, Sailah Ar Rizka, Nadia Kholifia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:


 EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 Email: [email protected]
 +6287777-586462 (WhatsApp Only)
 Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.