(σ,τ)-derivasi pada Ring Grup

Ridho Waluyo, Ahmad Faisol, Fitriani Fitriani

Abstract


Derivations play a fundamental role in ring theory and have been extensively studied and generalized, including to (σ, τ)-derivations, which involve endomorphisms σ and τ. While many studies have focused on (σ, τ)-derivations in prime, semiprime, or commutative rings, explicit constructions and investigations of such derivations in group rings remain limited. This paper constructs several concrete examples of (σ, τ)-derivations on group rings and explores their algebraic properties. The approach provides systematic illustrations and characterizations of derivations in noncommutative ring structures based on groups, thereby contributing to the development of derivation theory in group ring contexts.


Keywords


Derivation; Group Rings; (σ,τ)-derivation

Full Text:

PDF

References


C. P. Milies and S. K. Sehgal, An Introduction to Group Rings. New York: Springer Science & Business Media, 2002.

O. Kusmus, "On idempotent units in commutative group rings," Sak. Univ. J. Sci., vol. 24, no. 4, pp. 782–790, 2020, doi: 10.16984/saufenbilder.733935

E. A. Osba, H. Al-Ezeh, and M. Ghanem, "On U-group Rings," Commun. Korean Math. Soc., vol. 33, no. 4, pp. 1075–1082, Oct. 2018, doi: 10.4134/CKMS.c170393.

A. Sabharwal, P. Yadav, and R. K. Sharma, "A Note on Central Idempotents in Finite Group Rings of Symmetric Groups," in Algebra and Related Topics with Applications, M. Ashraf, A. Ali, and V. De Filippis, Eds., Springer Proc. Math. Stat., vol. 392, Singapore: Springer, 2022, pp. 277–286. doi: 10.1007/978-981-19-3898-6_22.

D. Chaudhuri, "(σ,τ)-Derivations of Group Rings," arXiv preprint, arXiv:1803.09418 [math.RA], ver. 3, Jul. 2018. doi: 10.48550/arXiv.1803.09418.

S. K. Tiwari, R. K. Sharma, and B. Dhara, "Identities related to generalized derivation on ideal in prime rings," Beitr. zur Algebr. und Geom., vol. 57, no. 4, pp. 809–821, 2016, doi: 10.1007/s13366-015-0262-6.

A. Alahmadi, S. Ali, A. N. Khan, and M. S. Khan, "A Characterization of Generalized Derivations on Prime Rings," Commun. Algebr., vol. 44, no. 8, pp. 3201–3210, 2016, doi: 10.1080/00927872.2015.1065861.

S. K. Tiwari, R. K. Sharma, and B. Dhara, "Multiplicative (generalized)-derivation in semiprime rings," Beitr. zur Algebr. und Geom., vol. 58, no. 1, pp. 211–225, 2017, doi: 10.1007/s13366-015-0279-x.

S. K. Tiwari, "Generalized derivations with multilinear polynomials in prime rings," Commun. Algebra, vol. 46, no. 12, pp. 5356–5372, 2018, doi: 10.1080/00927872.2018.1468899.

T. K. Lee, "Jordan (σ)-derivations of prime rings," Rocky Mt. J. Math., vol. 47, no. 2, pp. 511–525, 2017, doi: 10.1216/RMJ-2017-47-2-511.

B. Davvaz and L. K. Ardekani, "Generalized (Jordan) left derivations on rings," J. Contemp. Math. Anal. (Armenian Acad. Sci.), vol. 52, pp. 166–174, 2017.

E. F. Alharfie and N. M. Muthana, "The commutativity of prime rings with homoderivations," Int. J. Adv. Appl. Sci., vol. 5, no. 5, pp. 79–81, 2018, doi: 10.21833/ijaas.2018.05.010.

L. K. Ardakani, B. Davvaz, and S. Huang, "On derivations of prime and semi-prime gamma rings," Bol. Soc. Parana. Mat., vol. 37, no. 2, pp. 157–166, 2019, doi: 10.5269/bspm.v37i2.31658.

A. Boua and E. K. Sögütcü, "Semiprime Rings with Generalized Homoderivations," Bol. Soc. Parana. Mat., vol. 41, no. 41, pp. 1–8, 2023, doi: 10.5269/bspm.62479.

C. Garg and R. K. Sharma, "On generalized (α,β)-derivations in prime rings," Rend. Circ. Mat. Palermo, vol. 65, no. 2, pp. 175–184, 2016, doi: 10.1007/s12215-015-0227-5.

S. Reddy, C. J. S. Subbarayudu, and K. Mallikarjunarao, "Centralizing with generalized (σ,τ)-derivations on semiprime rings," Int. J. Algebr., vol. 10, no. 10, pp. 477–490, 2016.

C. J. S. Reddy and K. Subbarayudu, "Generalized (σ,τ)-Derivation in Prime Rings," IOSR J. Math., vol. 12, no. 5, pp. 1–21, 2016, doi: 10.9790/5728-1205070121.

A. M. Ibraheem, "On (σ,τ)-Derivations and Commutativity of Prime and Semi Prime Gamma-rings," Baghdad Sci. J., vol. 13, no. 1, Art. 22, pp. 198–204, 2016, doi: 10.21123/bsj.2016.13.1.0198.

E. Guven, "One Sided Generalized (σ,τ)-derivations on Rings," Bol. Soc. Parana. Mat., vol. 38, no. 2, pp. 41–50, 2020, doi: 10.5269/bspm.v38i2.35567.

A. J. Noor and N. Hijriati, "Grup Ring," J. Mat. Murni dan Terap. Epsilon, vol. 4, no. 1, pp. 31–41, 2010, doi: 10.20527/epsilon.v4i1.46.




DOI: https://doi.org/10.37905/euler.v13i2.31564

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Ridho Waluyo, Ahmad Faisol, Fitriani Fitriani

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:


 EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 Email: [email protected]
 +6287777-586462 (WhatsApp Only)
 Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.