Analisis Energi Adsorpsi dan HOMO-LUMO Nanopartikel Perak Ag₆ terhadap Fragmen Asam α-mikolat

Sri Janil Fitri Antogia, Akram La Kilo, Kostiawan Sukamto

Abstract


Mycolic acid is a major component of lipids in the cell wall of Mycobacterium tuberculosis, which makes it an important target in the development of antibacterial agents. This study aims to assess the potential interaction between Ag₆ silver nanoparticle cluster and α-mycolic acid fragment using Density Functional Theory (DFT)-based in silico approach. Structure optimization was performed using the B3LYP method with the Def2-SVP basis set. The complexes were formed by bringing Ag₆ closer to the main functional groups of α-micolic acid, namely hydroxyl (-OH), carboxyl (-COOH), cyclopropane ring (C3H6), and methyl (CH3), then analyzed for adsorption energy and HOMO-LUMO orbital characteristics. The results showed that Ag₆ formed a stable interaction with the -COOH group, with the highest adsorption energy value reaching -8.42 kcal/mol. HOMO-LUMO orbital analysis showed a decrease in the energy gap by 2.32 eV after complex formation, indicating an increase in the reactivity of the system. Orbital visualization revealed the possibility of charge transfer from the organic donor cluster to the metal cluster. These findings suggest that Ag₆ has potential as an antimicrobial agent with the ability to selectively interact with mycobacterial lipids. This study provides a theoretical basis for the design of metal nanoparticles as molecularly targeted alternative anti-tuberculosis therapeutic candidates.

Keywords


Silver Nanoparticles; Ag6; α-micolic acid; DFT; Tuberculosis

References


Akbari, M., Morad, R., & Maaza, M. (2020). First principle study of silver nanoparticle interactions with antimalarial drugs extracted from Artemisia annua plant. Journal of Nanoparticle Research, 22(11). https://doi.org/10.1007/s11051-020-05058-4

Arrigoni, R., Ballini, A., Topi, S., Bottalico, L., Jirillo, E., & Santacroce, L. (2022). Antibiotic Resistance to Mycobacterium tuberculosis and Potential Use of Natural and Biological Products as Alternative Anti-Mycobacterial Agents. In Antibiotics (Vol. 11, Issue 10). MDPI. https://doi.org/10.3390/antibiotics11101431

Ayalew, M. E. (2022). DFT Studies on Molecular Structure, Thermodynamics Parameters, HOMO-LUMO and Spectral Analysis of Pharmaceuticals Compound Quinoline (Benzo[b]Pyridine). Journal of Biophysical Chemistry, 13(03), 29–42. https://doi.org/10.4236/jbpc.2022.133003

Bruna, T., Maldonado-Bravo, F., Jara, P., & Caro, N. (2021). Silver nanoparticles and their antibacterial applications. In International Journal of Molecular Sciences (Vol. 22, Issue 13). MDPI. https://doi.org/10.3390/ijms22137202

Bursch, M., Mewes, J.-M., Hansen, A., & Grimme, S. (2022). Best-Practice DFT Protocols for Basic Molecular Computational Chemistry. Angewandte Chemie International Edition, 61, 1–27. https://doi.org/10.26434/chemrxiv-2022-n304h

Duwila, N. S., & Amin, M. (2023). Density Functional Theory Senyawa Kompleks Ni 2+, Zn 2+ Dan Pt 2+ Pirolidin-Ditiokarbamat. Jurnal Pendidikan MIPA Universitas Khairun, 8(1), 23–31. https://ejournal.unkhair.ac.id/index.php/Saintifik/article/view/6220/3917

Fabara, A., Cuesta, S., Pilaquinga, F., & Meneses, L. (2018). Computational Modeling of the Interaction of Silver Nanoparticles with the Lipid Layer of the Skin. Journal of Nanotechnology, 2018. https://doi.org/10.1155/2018/4927017

Fanoro, O. T., & Oluwafemi, O. S. (2020). Bactericidal antibacterial mechanism of plant synthesized silver, gold and bimetallic nanoparticles. In Pharmaceutics (Vol. 12, Issue 11, pp. 1–20). MDPI AG. https://doi.org/10.3390/pharmaceutics12111044

Gupta, A., Mumtaz, S., Li, C. H., Hussain, I., & Rotello, V. M. (2019). Combatting antibiotic-resistant bacteria using nanomaterials. In Chemical Society Reviews (Vol. 48, Issue 2, pp. 415–427). Royal Society of Chemistry. https://doi.org/10.1039/c7cs00748e

Gupta, A., Mumtaz, S., Li, C. H., Hussain, I., & Rotello, V. M. (2019). Combatting antibiotic-resistant bacteria using nanomaterials. In Chemical Society Reviews (Vol. 48, Issue 2, pp. 415–427). Royal Society of Chemistry. https://doi.org/10.1039/c7cs00748e

Kuang, W., Zhang, H., Wang, X., & Yang, P. (2022). Overcoming Mycobacterium tuberculosis through small molecule inhibitors to break down cell wall synthesis. In Acta Pharmaceutica Sinica B (Vol. 12, Issue 8, pp. 3201–3214). Chinese Academy of Medical Sciences. https://doi.org/10.1016/j.apsb.2022.04.014

Mikhailova, E. O. (2020). Silver Nanoparticles: Mechanism of Action and Probable Bio-Application. In Journal of Functional Biomaterials (Vol. 11, Issue 4). MDPI. https://doi.org/10.3390/jfb11040084

Mvubu, N. E., & Jacoby, K. (2023). Mycobacterium tuberculosis complex molecular networks and their regulation: Implications of strain heterogeneity on epigenetic diversity and transcriptome regulation. Heliyon, 9(12). https://doi.org/10.1016/j.heliyon.2023.e22611

Nikolić, N., Spasojević, J., Radosavljević, A., Milošević, M., Barudžija, T., Rakočević, L., & Kačarević-Popović, Z. (2023). Influence of poly(vinyl alcohol)/poly(N-vinyl-2-pyrrolidone) polymer matrix composition on the bonding environment and characteristics of Ag nanoparticles produced by gamma irradiation. Radiation Physics and Chemistry, 202. https://doi.org/10.1016/j.radphyschem.2022.110564

Pongajow, N., Jurlianti, & Iwan, H. (2017). Density Functional Theory Calculation on Geometry and Bond Characterization of Ni(II)-dibutyldithiocarbamate. Indonesian Journal Of Applied Sciences, 7, 33–36. https://jurnal.unpad.ac.id/ijas/article/download/2601/7075

Priya, C. G., Venkatraman, B. R., Elangovan, N., Kumar, M. D., Arulmozhi, T., Sowrirajan, S., Islam, M. S., & Bhagavathsingh, J. (2023). Absorption studies on serotonin neurotransmitter with the platinum metal cluster using the gas phase and different solvents, topological and non-covalent interaction: A DFT approach. Chemical Physics Impact, 7. https://doi.org/10.1016/j.chphi.2023.100295

Sambalova, O., Thorwarth, K., Heeb, N. V., Bleiner, D., Zhang, Y., Borgschulte, A., & Kroll, A. (2017). Carboxylate Functional Groups Mediate Interaction with Silver Nanoparticles in Biofilm Matrix. ACS Omega, 3(1), 724–733. https://doi.org/10.1021/acsomega.7b00982

Sheena Mary, Y., Shyma Mary, Y., Krátký, M., Vinsova, J., Gawad, J., & Cristina Gamberini, M. (2023). The concentration dependent SERS studies of a bioactive 4-chlorobenzylidene derivative: Experimental and DFT investigations. Journal of Molecular Liquids, 381. https://doi.org/10.1016/j.molliq.2023.121855

Taufiq Siregar, M. I. (2015). Mekanisme Resistensi Isoniazid &Mutasi Gen KatG Ser315Thr (G944C) Mycobacterium tuberculosis Sebagai Penyebab TerseringResistensi Isoniazid. Jambi Medical Journal, 3(2), 119–131.

Xu, X., Dong, B., Peng, L., Gao, C., He, Z., Wang, C., & Zeng, J. (2022). Anti-tuberculosis drug development via targeting the cell envelope of Mycobacterium tuberculosis. In Frontiers in Microbiology (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2022.1056608




DOI: https://doi.org/10.37905/je.v20i1.32399

Refbacks

  • There are currently no refbacks.



Editorial Office


Department of Chemistry, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Bone Bolango 96554, Gorontalo, Indonesia

E-mail: [email protected]

+6285341773856 (Call/sms/wa)

Jurnal Entropi (JE) (p-ISSN: 1907-1965| e-ISSN: XXX-XXXX) by Department of Chemistry Universitas Negeri Gorontalo. This work is licensed under a Creative Commons Attribution 4.0 International License. Powered by Public Knowledge Project OJS