Artificial Intelligence in Road Traffic Accident Prediction

Joko Siswanto, Alfath Satria Negara Syaban, Hariani Hariani


The rapid development of AI shows its power and great development potential in practical engineering applications. Critical issues and potential solutions can reduce road traffic accidents and application of AI in road accident prediction. The published use of AI for road accident prediction is reviewed, presented, and represented as the main objective. The methods are collecting article data, quotations, presentation, and representation. The article data collection was obtained from 671 conference and journal articles in 2019-2023, but the suitability of articles that can be used is 69. Quotation produces a grouping of approaches, models, predictions, and benefits. The presentation showed that most approaches used were machine learning, the most used model was random forest, the prediction was mostly about severity, and the most benefit was about number reduction. Representation produces road accidents and related factors into factors in road accident predictions using artificial intelligence, so strategies and anticipation can be made to overcome them to improve road safety. AI in road accident prediction plays an important role in building predictive models with the hope that road accidents can be identified early, risk factors can be reduced, and effective preventive measures can be taken to improve road safety.


Artificial Intelligence; Prediction; Road Accident

Full Text:



Alagarsamy, S., Malathi, M., Manonmani, M., Sanathani, T., & Kumar, A. S. (2021). Prediction of road accidents using machine learning technique. 2021 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA), 1695–1701. doi: 10.1109/ICECA52323.2021.9675852

Alrajhi, M., & Kamel, M. (2019). A deep-learning model for predicting and visualizing the risk of road traffic accidents in Saudi Arabia: A tutorial approach. International Journal of Advanced Computer Science and Applications, 10(11). doi: 10.14569/IJACSA.2019.0101166

Augustine, T., & Shukla, S. (2022). Road accident prediction using machine learning approaches. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 808–811. doi: 10.1109/ICACITE53722.2022.9823499

Babu, S. N., & Tamilselvi, J. (2019). Generating road accident prediction set with road accident data analysis using enhanced expectation-maximization clustering algorithm and improved association rule mining. Journal Europeen Des Systemes Automatises, 52(1). doi: 10.18280/jesa.520108

Bahiru, T. K., Manjula, V. S., Akele, T. B., Tesfaw, E. A., & Belay, T. D. (2023). Mining road traffic accident data for prediction of accident severity. 2023 International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT), 606–612. doi: 10.1109/IDCIoT56793.2023.10053409

Ballamudi, K. R. (2019). Road accident analysis and prediction using machine learning algorithmic approaches. Asian Journal of Humanity, Art and Literature, 6(2), 185–192. doi: 10.18034/ajhal.v6i2.529

Barachi, M. El, Kamoun, F., Ferdaos, J., Makni, M., & Amri, I. (2020). An artificial intelligence based crowdsensing solution for on-demand accident scene monitoring. Procedia Computer Science, 170, 303–310. doi: 10.1016/j.procs.2020.03.044

Becker, N., Rust, H. W., & Ulbrich, U. (2020). Predictive modeling of hourly probabilities for weather-related road accidents. Natural Hazards and Earth System Sciences, 20(10), 2857–2871. doi: 10.5194/nhess-20-2857-2020

Begum, A. P. S. B. (2022). Road accidents prediction and classification. International Journal for Research in Applied Science and Engineering Technology, 10(6), 4488–4491. doi: 10.22214/ijraset.2022.44988

Behura, A., & Behura, A. (2020). Road accident prediction and feature analysis by using deep learning. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 1–7. doi: 10.1109/ICCCNT49239.2020.9225336

Bokaba, T., Doorsamy, W., & Paul, B. S. (2022). Comparative study of machine learning classifiers for modelling road traffic accidents. Applied Sciences (Switzerland), 12(2). doi: 10.3390/app12020828

Boo, Y., & Choi, Y. (2021). Comparison of prediction models for mortality related to injuries from road traffic accidents after correcting for undersampling. International Journal of Environmental Research and Public Health, 18(11), 5604. doi: 10.3390/ijerph18115604

Boo, Y., & Choi, Y. (2022). Comparison of mortality prediction models for road traffic accidents: an ensemble technique for imbalanced data. BMC Public Health, 22(1), 1476. doi: 10.1186/s12889-022-13719-3

Borucka, A., Kozłowski, E., Oleszczuk, P., & Świderski, A. (2020). Predictive analysis of the impact of the time of day on road accidents in Poland. Open Engineering, 11(1), 142–150. doi: 10.1515/eng-2021-0017

Budiawan, W., Sriyanto, Saptadi, S., Arvianto, A., Pamuji, H., & Andarani, P. (2022). Design of traffic accident prediction model in toll road using a decision tree algorithm. International Journal of Applied Science and Engineering Review, 03(06), 11–31. doi: 10.52267/IJASER.2022.3602

Charandabi, N. K., Gholami, A., & Bina, A. A. (2022). Road accident risk prediction using generalized regression neural network optimized with self-organizing map. Neural Computing and Applications, 34(11), 8511–8524. doi: 10.1007/s00521-021-06549-8

Chen, L., Li, C. Y., Zhan, L., Tan, Q., Tian, X. M., Cheng, H., & Li, K. (2022). Influencing factors analysis and prediction of urban road traffic accident patterns. Chang’an Daxue Xuebao (Ziran Kexue Ban)/Journal of Chang’an University (Natural Science Edition), 42(4). doi: 10.19721/j.cnki.1671-8879.2022.04.010

Cheng, R., Zhang, M.-M., & Yu, X.-M. (2019). Prediction model for road traffic accident based on random forest. DEStech Transactions on Social Science, Education and Human Science, icesd. doi: 10.12783/dtssehs/icesd2019/28223

Dabhade, S. (2020). Road accident analysis and prediction using machine learning. International Journal for Research in Applied Science and Engineering Technology, 8(1), 100–103. doi: 10.22214/ijraset.2020.1018

Dia, Y., Faty, L., Sall, O., Tona Landu, T., & Ngor Sarr, E. (2022). Predicting the severity of the road accidents in Senegal: An empirical study. 2022 the 5th International Conference on Data Storage and Data Engineering (DSDE), 91–96. doi: 10.1145/3528114.3528129

Dia, Y., Faty, L., Sarr, M. D., Sall, O., Bousso, M., & Landu, T. T. (2022). Study of supervised learning algorithms for the prediction of road accident severity in Senegal. 2022 7th International Conference on Computational Intelligence and Applications (ICCIA), 123–127. doi: 10.1109/ICCIA55271.2022.9828434

Dias, D., Silva, J. S., & Bernardino, A. (2023). The prediction of road accident risk through data mining: A case study from Setubal, Portugal. Informatics, 10(1), 17. doi: 10.3390/informatics10010017

Donchenko, D., Sadovnikova, N., & Parygin, D. (2020). Prediction of road accidents’ severity on Russian roads using machine learning techniques. In Lecture Notes in Mechanical Engineering (pp. 1493–1501). doi: 10.1007/978-3-030-22063-1_157

Farina, E., Nabhen, J. J., Dacoregio, M. I., Batalini, F., & Moraes, F. Y. (2022). An overview of artificial intelligence in oncology. In Future Science OA (Vol. 8, Issue 4). doi: 10.2144/fsoa-2021-0074

Fiorentini, N., & Losa, M. (2020). Handling imbalanced data in road crash severity prediction by machine learning algorithms. Infrastructures, 5(7), 61. doi: 10.3390/infrastructures5070061

Franklin, R. J., & Mohana. (2020). Traffic signal violation detection using artificial intelligence and deep learning. 2020 5th International Conference on Communication and Electronics Systems (ICCES), 839–844. doi: 10.1109/ICCES48766.2020.9137873

Gangwani, D., & Gangwani, P. (2021). Applications of machine learning and artificial intelligence in intelligent transportation system: A review. In Lecture Notes in Electrical Engineering (Vol. 778, pp. 203–216). doi: 10.1007/978-981-16-3067-5_16

Gorzelańczyk, P., Jurkovič, M., Kalina, T., & Mohanty, M. (2022). Forecasting the road accident rate and the impact of the covid 19 on its frequency in the polish provinces. Communications - Scientific Letters of the University of Zilina, 24(4), A216–A231. doi: 10.26552/com.C.2022.4.A216-A231

Guo, Q., Guo, B., Wang, Y., Tian, S., & Chen, Y. (2022). A combined prediction model composed of the GM (1,1) model and the BP neural network for major road traffic accidents in China. Mathematical Problems in Engineering, 2022, 1–11. doi: 10.1155/2022/8392759

Gupta, U., MK, V., & Srinivasa, G. (2022). A comprehensive study of road traffic accidents: Hotspot analysis and severity prediction using machine learning. 2022 IEEE Bombay Section Signature Conference (IBSSC), 1–6. doi: 10.1109/IBSSC56953.2022.10037449

Gutierrez-Osorio, C., & Pedraza, C. (2020). Modern data sources and techniques for analysis and forecast of road accidents: A review. Journal of Traffic and Transportation Engineering (English Edition), 7(4), 432–446. doi: 10.1016/j.jtte.2020.05.002

Huamaní, E. L., Mantari, A. A., Leon-Ayala, R., & Meneses-Claudio, B. (2023). Development of artificial intelligence algorithm for the analysis and prediction of car accidents on the roads of Peru. International Journal of Engineering Trends and Technology, 71(2), 52–60. doi: 10.14445/22315381/IJETT-V71I2P207

Infante, P., Jacinto, G., Santos, D., Nogueira, P., Afonso, A., Silva, M., Nogueira, V., Rego, L., Quaresma, P., Saias, J., Gois, P., & Rebelo Manuel, P. (2023). Prediction of road traffic accidents on a road in Portugal: A mixed artificial intelligence, statistics, and geographic information systems approach. SSRN Electronic Journal. doi: 10.2139/ssrn.4334671

Jain, S., Krishna, S., Pruthi, S., Jain, R., & Nagrath, P. (2022). Analysis of road accidents in India and prediction of accident severity. In Lecture Notes on Data Engineering and Communications Technologies (Vol. 71, pp. 69–87). doi: 10.1007/978-981-16-2937-2_6

Jha, A. N., Chatterjee, N., & Tiwari, G. (2021). A performance analysis of prediction techniques for impacting vehicles in hit-and-run road accidents. Accident Analysis & Prevention, 157, 106164. doi: 10.1016/j.aap.2021.106164

Ji, W., Yang, T., Yuan, Q., Cheng, G., & Yu, S. (2023). Prediction model of accident vehicle speed based on artificial intelligence decision tree algorithm. In Lecture Notes in Electrical Engineering: Vol. 941 LNEE (pp. 317–324). doi: 10.1007/978-981-19-4786-5_44

Joshi, S., Alsadoon, A., Senanayake, S. M. N. A., Prasad, P. W. C., Yong, S. Y., Elchouemi, A., & Vo, T. H. (2020). Pattern mining predictor system for road accidents. In Communications in Computer and Information Science (Vol. 1287, pp. 605–615). doi: 10.1007/978-3-030-63119-2_49

Kaliraja, C., Chitradevi, D., & Rajan, A. (2022). Predictive analytics of road accidents using machine learning. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 1782–1786. doi: 10.1109/ICACITE53722.2022.9823773

Kandasamy, S., Akshaya, S., Anush, J., & Arunkumar, S. (2021). A machine learning approach to analyze and predict the severity of road accidents. Annals of the Romanian Society for Cell Biology.

Khan, S., Adnan, A., & Iqbal, N. (2022). Applications of artificial intelligence in transportation. 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET), 1–6. doi: 10.1109/ICECET55527.2022.9872928

Kim, D., Jung, S., & Yoon, S. (2021). Risk prediction for winter road accidents on expressways. Applied Sciences (Switzerland), 11(20). doi: 10.3390/app11209534

Kim, H., Kim, J.-T., Shin, S., Lee, H., & Lim, J. (2022). Prediction of run-off road crash severity in South Korea’s highway through tree augmented naïve bayes learning. Applied Sciences, 12(3), 1120. doi: 10.3390/app12031120

Kim, Y., Park, J., & Oh, C. (2021). A crash prediction method based on artificial intelligence techniques and driving behavior event data. Sustainability, 13(11), 6102. doi: 10.3390/su13116102

Kshirsagar, P. R., Dadheech, P., Yuvaraj, T., Moorthy, C. A. S., & Upadhyaya, M. (2022). Fatigue detection using artificial intelligence. AIP Conference Proceedings, 2393, 020080. doi: 10.1063/5.0074121

Kumar, B. V., Srinivas, K. K., Anudeep, P., Yadav, N. S., Kumar, G. V., & Harsha Vardhini, P. A. (2021). Artificial intelligence based algorithms for driver distraction detection: A review. 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC), 2021-October, 383–386. doi: 10.1109/ISPCC53510.2021.9609349

Kushwaha, M., & Abirami, M. S. (2022). Comparative analysis on the prediction of road accident severity using machine learning algorithms. International Conference on Micro-Electronics and Telecommunication Engineering, 373, 269–280. doi: 10.1007/978-981-16-8721-1_26

Lazar, H., & Jarir, Z. (2022). Road traffic accident prediction: a driving behavior approach. 2022 8th International Conference on Optimization and Applications (ICOA), 1–4. doi: 10.1109/ICOA55659.2022.9934000

Lu, Y., Wu, J., Shao, S., Shi, S., Zhou, R., & Wang, W. (2022). Prediction model for road transport accidents of hazardous chemicals based on Bayesian network. China Safety Science Journal, 32(3). doi: 10.16265/j.cnki.issn1003-3033.2022.03.024

Lv, Z., & Xie, S. (2021). Artificial intelligence in the digital twins: State of the art, challenges, and future research topics. Digital Twin, 1, 12. doi: 10.12688/digitaltwin.17524.1

Mane, G., & Rathod, V. U. (2022). Road accident prediction using machine learning techniques. International Journal of Research in Engineering and Science (IJRES), 10.

Mapa, J. S. (2019). Road traffic accident case status prediction integrating a modified C4.5 algorithm. International Journal of Advanced Trends in Computer Science and Engineering, 8(5), 2622–2625. doi: 10.30534/ijatcse/2019/114852019

Mehta, K., Jain, S., Agarwal, A., & Bomnale, A. (2022). Road accident prediction using Xgboost. 2022 International Conference on Emerging Techniques in Computational Intelligence (ICETCI), 50–56. doi: 10.1109/ICETCI55171.2022.9921367

Meocci, M., Branzi, V., Martini, G., Arrighi, R., & Petrizzo, I. (2021). A predictive pedestrian crash model based on artificial intelligence techniques. Applied Sciences, 11(23), 11364. doi: 10.3390/app112311364

Mor, N., Sood, H., & Goyal, T. (2020). Application of machine learning technique for prediction of road accidents in Haryana-A novel approach. Journal of Intelligent & Fuzzy Systems, 38(5), 6627–6636. doi: 10.3233/JIFS-179742

N, A. P., & Punithavalli, M. (2019). Prediction of road accident locations in road accident database by mining spatio-temporal association rules. ARPN Journal of Engineering and Applied Sciences, 14(12).

N, A. P., & Punithavalli, M. (2020). Bounded memory based frequent pattern growth approach with deep neural network and decision tree for road accident prediction. Indian Journal of Computer Science and Engineering, 11(5), 623–633. doi: 10.21817/indjcse/2020/v11i5/201105189

Ning, J., She, H., Zhao, D., Luo, D., & Wang, L. (2022). A road-level traffic accident risk prediction method. Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 45(2). doi: 10.13190/j.jbupt.2021-142

Olayode, O. I., Tartibu, L. K., & Okwu, M. O. (2020). Application of artificial intelligence in traffic control system of non-autonomous vehicles at signalized road intersection. Procedia CIRP, 91, 194–200. doi: 10.1016/j.procir.2020.02.167

Olugbade, S., Ojo, S., Imoize, A. L., Isabona, J., & Alaba, M. O. (2022). A review of artificial intelligence and machine learning for incident detectors in road transport systems. Mathematical and Computational Applications, 27(5), 77. doi: 10.3390/mca27050077

Oueida, S., Hossain, S. Q., Kotb, Y., & Ahmed, S. I. (2022). A fair and ethical healthcare artificial intelligence system for monitoring driver behavior and preventing road accidents. In Lecture Notes in Networks and Systems: Vol. 359 LNNS (pp. 431–444). doi: 10.1007/978-3-030-89880-9_33

P, C., & M, S. (2022). Road accident prediction and classification using machine learning. 2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon), 1–8. doi: 10.1109/MysuruCon55714.2022.9972671

Pachaivannan, P., Hemamalini Ranganathan, R., Navin Elamparithi, P., & Dhanagopal, R. (2020). Indian road conditions and accident risk predictions using deep learning approach – A review. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), 199–202. doi: 10.1109/ICISS49785.2020.9316128

Panda, C., Mishra, A. K., Dash, A. K., & Nawab, H. (2023). Predicting and explaining severity of road accident using artificial intelligence techniques, SHAP and feature analysis. International Journal of Crashworthiness, 28(2), 186–201. doi: 10.1080/13588265.2022.2074643

Parthiban, D., Vijayan, D. S., Shadhil, M. H., Reshma, U., & Krishnan, R. (2022). Analysis of road accident with prediction model using machine learning algorithm in the region of Kerala. AIP Conference Proceedings, 2426, 020009. doi: 10.1063/5.0111414

Patil, J., Patil, V., Walavalkar, D., & Lobo, V. B. (2021). Road accident analysis and hotspot prediction using clustering. 2021 6th International Conference on Communication and Electronics Systems (ICCES), 763–768. doi: 10.1109/ICCES51350.2021.9489074

Paul, J., Jahan, Z., Lateef, K. F., Islam, M. R., & Bakchy, S. C. (2020). Prediction of road accident and severity of Bangladesh applying machine learning techniques. 2020 IEEE 8th R10 Humanitarian Technology Conference (R10-HTC), 2020-Decem, 1–6. doi: 10.1109/R10-HTC49770.2020.9356987

Popoola, O. M., Abiola, O. S., Odunfa, S. O., & Ismaila, S. O. (2019). Comparison of road traffic accident prediction models for two-lane highway integrating traffic and pavement condition parameters. Journal of Natural Sciences Engineering and Technology, 16(2), 1–10. doi: 10.51406/jnset.v16i2.1841

Prakash, T. D., & V, N. (2022). Comparative analysis using K-Nearest neighbour with artificial neural network to improve accuracy for predicting road accidents. 2022 International Conference on Edge Computing and Applications (ICECAA), 1092–1096. doi: 10.1109/ICECAA55415.2022.9936227

Radzuan, N. Q., Hassan, M. H. A., Abdul Majeed, A. P. P., Musa, R. M., Mohd Razman, M. A., & Abu Kassim, K. A. (2020). Predicting serious injuries due to road traffic accidents in Malaysia by means of artificial neural network. In Lecture Notes in Mechanical Engineering (pp. 75–80). doi: 10.1007/978-981-13-9539-0_8

Rajkumar, A. R., Prabhakar, S., & Priyadharsini, A. M. (2020). Prediction of road accident severity using machine learning algorithm. International Journal of Advanced Science and Technology, 29(6).

S, S., J, A. B., D, V., D, M. G., & Anusha. (2022). Road accident analysis and prediction model using a data mining hybrid technique. International Journal for Research in Applied Science and Engineering Technology, 10(7), 4300–4304. doi: 10.22214/ijraset.2022.45977

Sahu, S., Maram, B., Gampala, V., & Daniya, T. (2023). Analysis of road accidents prediction and interpretation using KNN classification model. In Lecture Notes in Networks and Systems (Vol. 490, pp. 163–172). doi: 10.1007/978-981-19-4052-1_18

Shaheen, M., Arshad, M., & Iqbal, O. (2020). Role and key applications of artificial intelligence & machine learning in transportation. European Journal of Technology, 4(1), 47–59. doi: 10.47672/ejt.632

Shaik, M. E., Islam, M. M., & Hossain, Q. S. (2021). A review on neural network techniques for the prediction of road traffic accident severity. Asian Transport Studies, 7, 100040. doi: 10.1016/j.eastsj.2021.100040

Singh, G., Pal, M., Yadav, Y., & Singla, T. (2020). Deep neural network-based predictive modeling of road accidents. Neural Computing and Applications, 32(16), 12417–12426. doi: 10.1007/s00521-019-04695-8

Sundari, M. R., Reddi, P., Murthy, K. S., & Sowmya, D. S. (2023). Fatality prediction in road accidents using neural networks. In Lecture Notes in Networks and Systems (Vol. 600, pp. 25–33). doi: 10.1007/978-981-19-8825-7_3

Tonni, S. I., Aka, T. A., Antik, M. M., Taher, K. A., Mahmud, M., & Kaiser, M. S. (2021). Artificial intelligence based driver vigilance system for accident prevention. 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD), 412–416. doi: 10.1109/ICICT4SD50815.2021.9396916

Venkat, A., Vijey, G. K., & Susan Thomas, I. (2020). Machine learning based analysis for road accident prediction. International Journal of Emerging Technology and Innovative Engineering, 6(2).

Whasphutthisit, T., & Jitsakul, W. (2022). Comparison of prediction models for road deaths on road network. 2022 14th International Conference on Knowledge and Smart Technology (KST), 137–142. doi: 10.1109/KST53302.2022.9729086

Wu, D., & Wang, S. (2020). Comparison of road traffic accident prediction effects based on SVR and BP neural network. 2020 IEEE International Conference on Information Technology,Big Data and Artificial Intelligence (ICIBA), 1150–1154. doi: 10.1109/ICIBA50161.2020.9277150

Xiao, Z., Tian, Y., Cao, D., & Zhang, Z. (2020). Road traffic risk safety prediction based on BP neural network. 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), 527–533. doi: 10.1109/ITAIC49862.2020.9339063

Yassin, S. S., & Pooja. (2020). Road accident prediction and model interpretation using a hybrid K-means and random forest algorithm approach. SN Applied Sciences, 2(9), 1576. doi: 10.1007/s42452-020-3125-1

Yeole, M., Jain, R. K., & Menon, R. (2022). Prediction of road accident using artificial neural network. International Journal of Engineering Trends and Technology, 70(2), 143–150. doi: 10.14445/22315381/IJETT-V70I2P217

Yeole, M., Jain, R. K., & Menon, R. (2023). Road traffic accident prediction for mixed traffic flow using artificial neural network. Materials Today: Proceedings, 77, 832–837. doi: 10.1016/j.matpr.2022.11.490

Yuan, M. H., & Wu, Y. F. (2022). A gray prediction method for economic loss of road traffic accidents based on Logistic model. Advances in Transportation Studies, 4(Special issue). doi: 10.53136/97912218027646

Yuan, Y., Yi, A., Wang, Y., & Chen, X. (2021). Research on technical model and method of urban road traffic accident and traffic conflict based on artificial intelligence. 2021 International Conference on Aviation Safety and Information Technology, 885–889. doi: 10.1145/3510858.3511416

Zhang, C., Li, Y., & Li, T. (2022). A road traffic accidents prediction model for traffic service robot. Library Hi Tech, 40(4), 1031–1048. doi: 10.1108/LHT-05-2020-0115

Zhao, F., Fu, L., Zhong, M., Cui, G., & Zheng, C. (2020). Traffic accident prediction on provincial road using fuzzy neural network. CICTP 2020, 3959–3968. doi: 10.1061/9780784482933.340



  • There are currently no refbacks.

JJI has been indexed by:
Sinta Crossref Scholar Garuda
Base Dimension ROAD SIS

Editorial Office

Department of Informatics Engineering, Universitas Negeri Gorontalo
Engineering Faculty Building, 1st Floor
Jl. Prof. Dr. Ing. B. J. Habibie, Bone Bolango, Gorontalo, 96119, Indonesia.Whatsapp: +6281314270499Email:


Creative Commons Licence
Jambura Journal of Informatics (JJi), is licensed under a Lisensi Creative Commons Atribusi 4.0 Internasional.