THE EFFECT OF HYDROTHERMAL TEMPERATURE AND UREA DOPING TIME ON THE OPTICAL PROPERTIES OF LEMONGRASS-BASED CARBON NANOPARTICLES (CNPs)
Abstract
Keywords
Full Text:
PDFReferences
Atabaev, T. Sh., Sayatova, S., Molkenova, A., & Taniguchi, I. (2019). Nitrogen-doped carbon nanoparticles for potential temperature sensing applications. Sensing and Bio-Sensing Research, 22, 100253.
Choi, J., Kim, N., Oh, J.-W., & Kim, F. S. (2018). Bandgap engineering of nanosized carbon dots through electron-accepting functionalization. Journal of Industrial and Engineering Chemistry, 65, 104-111.
Dhenadhayalan, N., & Lin, K.-C. (2015). Chemically Induced Fluorescence Switching of Carbon-Dots and Its Multiple Logic Gate Implementation. Scientific Reports, 5 (1), 10012.
Dias, C., Vasimalai, N., P. Sárria, M., Pinheiro, I., Vilas-Boas, V., Peixoto, J., & Espiña, B. (2019). Biocompatibility and Bioimaging Potential of Fruit-Based Carbon Dots. Nanomaterials, 9 (2), 199.
Falah, S., Ayunda, R. D., & Faridah, D. N. (2015). Potential of lemongrass leaves extract (Cymbopogon citratus) as prevention for oil oxidation.
Jelinek, R. (2017). Carbon-Dot Synthesis. In R. Jelinek, Carbon Quantum Dots (pp. 5-27). Springer International Publishing.
Jhonsi, M. A. (2018). Carbon Quantum Dots for Bioimaging. In M. S. Ghamsari (Ed.), State of the Art in Nano-bioimaging. InTech.
Khan, W. U., Wang, D., Zhang, W., Tang, Z., Ma, X., Ding, X., Du, S., & Wang, Y. (2017). High Quantum Yield Green-Emitting Carbon Dots for Fe(ІІІ) Detection, Biocompatible Fluorescent Ink and Cellular Imaging. Scientific Reports, 7 (1), 14866.
Li, C.-L., Ou, C.-M., Huang, C.-C., Wu, W.-C., Chen, Y.-P., Lin, T.-E., Ho, L.-C., Wang, C.-W., Shih, C.-C., Zhou, H.-C., Lee, Y.-C., Tzeng, W.-F., Chiou, T.-J., Chu, S.-T., Cang, J., & Chang, H.-T. (2014). Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells. Journal of Materials Chemistry B, 2 (28), 4564.
Li, J., Ma, S., Xiao, X., & Zhao, D. (2019). The One-Step Preparation of Green-Emissioned Carbon Dots through Hydrothermal Route and Its Application. Journal of Nanomaterials, 1-10.
Liang, Y., Liu, Y., Li, S., Lu, B., Liu, C., Yang, H., Ren, X., & Hou, Y. (2019). Hydrothermal growth of nitrogen-rich carbon dots as a precise multifunctional probe for both Fe3+ detection and cellular bio-imaging. Optical Materials, 89, 92-99.
Liu, S., Tian, J., Wang, L., Zhang, Y., Qin, X., Luo, Y., Asiri, A. M., Al-Youbi, A. O., & Sun, X. (2012). Hydrothermal Treatment of Grass: A Low-Cost, Green Route to Nitrogen-Doped, Carbon-Rich, Photoluminescent Polymer Nanodots as an Effective Fluorescent Sensing Platform for Label-Free Detection of Cu(II) Ions. Advanced Materials, 24 (15), 2037-2041.
Mauro, N., Utzeri, M. A., Buscarino, G., Sciortino, A., Messina, F., Cavallaro, G., & Giammona, G. (2020). Pressure-Dependent Tuning of Photoluminescence and Size Distribution of Carbon Nanodots for Theranostic Anticancer Applications. Materials, 13 (21), 4899.
Mehta, V. N., Jha, S., Singhal, R. K., & Kailasa, S. K. (2014). Preparation of multicolor emitting carbon dots for HeLa cell imaging. New J. Chem., 38 (12), 6152-6160.
Meiling, T. T., Cywiński, P. J., & Bald, I. (2016). White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis. Scientific Reports, 6 (1), 28557.
Nammahachak, N., Aup-Ngoen, K. K., Asanithi, P., Horpratum, M., Chuangchote, S., Ratanaphan, S., & Surareungchai, W. (2022). Hydrothermal synthesis of carbon quantum dots with size tunability via heterogeneous nucleation. RSC Advances, 12 (49), 31729-31733.
Nurinnafi'a, A. M. U., Artini, K. S., & Permatasari, D. A. I. (2022). Total Flavonoid Content of Lemongrass Leaf (Cymbogoncitratus (DC.) Stapf) Extract and Antioxidant Activity with Frap. Journal of Fundamental and Applied Pharmaceutical Science, 3 (1), progress.
Nurcholis1, W., Weni, M., Fitria, R., Najmah, Manek, K., R., & Habibi, B., Y. (2019). Toxicity Test of Roots, Stems and Leaves of Citronella Lemongrass (Cymbopogon nardus). Curr. Biochem. 6 (2): 78-85.
Pathak, C. S., Mishra, D. D., Agarwala, V., & Mandal, M. K. (2012). Blue light emission from barium doped zinc sulfide nanoparticles. Ceramics International, 38 (7), 5497-5500.
Prasannan, A., & Imae, T. (2013). One-Pot Synthesis of Fluorescent Carbon Dots from Orange Waste Peels. Industrial & Engineering Chemistry Research, 52 (44), 15673-15678.
Pratiwy, A. E., Kusumaningrum, I., & Aminullah, A. (2019). Utilization of Lemongrass Extract (Cymbopogon Citratus) Against the Antioxidant Content and Sensory Properties of Dark Chocolate Products. JURNAL PERTANIAN, 10 (2), 80.
Reckmeier, C. J., Schneider, J., Susha, A. S., & Rogach, A. L. (2016). Luminescent colloidal carbon dots: Optical properties and effects of doping [Invited]. Optics Express, 24 (2), A312.
Ruan, Y., Wu, L., & Jiang, X. (2016). Self-assembly of nitrogen-doped carbon nanoparticles: A new ratiometric UV-vis optical sensor for the highly sensitive and selective detection of Hg 2+ in aqueous solution. The Analyst, 141 (11), 3313-3318.
Sachdev, A., & Gopinath, P. (2015). Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents. The Analyst, 140 (12), 4260-4269.
Shah, G., Shri, R., Panchal, V., Sharma, N., Singh, B., & Mann, A. (2011). Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (Lemon grass). Journal of Advanced Pharmaceutical Technology & Research, 2 (1), 3.
Smagulova, S., Egorova, M., & Tomskaya, A. (2019). Investigation of the properties of carbon quantum dots synthesized by the hydrothermal method. IOP Conference Series: Materials Science and Engineering, 693 (1), 012031.
Suram, S. K., Newhouse, P. F., & Gregoire, J. M. (2016). High Throughput Light Absorber Discovery, Part 1: An Algorithm for Automated Tauc Analysis. ACS Combinatorial Science, 18 (11), 673-681.
Truskewycz, A., Yin, H., Halberg, N., Lai, D. T. H., Ball, A. S., Truong, V. K., Rybicka, A. M., & Cole, I. (2022). Carbon Dot Therapeutic Platforms: Administration, Distribution, Metabolism, Excretion, Toxicity, and Therapeutic Potential. Small, 18 (16), 2106342.
Wu, P., Li, W., Wu, Q., Liu, Y., & Liu, S. (2017). Hydrothermal synthesis of nitrogen-doped carbon quantum dots from microcrystalline cellulose for the detection of Fe 3+ ions in an acidic environment. RSC Advances, 7 (70), 44144-44153.
Yang, X., Zhuo, Y., Zhu, S., Luo, Y., Feng, Y., & Dou, Y. (2014). Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosensors and Bioelectronics, 60, 292-298.
Zeng, Z., Zhang, W., Arvapalli, D. M., Bloom, B., Sheardy, A., Mabe, T., Liu, Y., Ji, Z., Chevva, H., Waldeck, D. H., & Wei, J. (2017). A fluorescence-electrochemical study of carbon nanodots (CNDs) in bio- and photoelectronic applications and energy gap investigation. Physical Chemistry Chemical Physics, 19 (30), 20101-20109.
Zhang, Y.-Y., Wu, M., Wang, Y.-Q., He, X.-W., Li, W.-Y., & Feng, X.-Z. (2013). A new hydrothermal refluxing route to strong fluorescent carbon dots and its application as fluorescent imaging agent. Talanta, 117, 196-202.
DOI: https://doi.org/10.34312/jpj.v5i1.19048
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Rahmaniah Nalwi, Akhiruddin Maddu, Mersi Kurniati, Jumardin

This work is licensed under a Creative Commons Attribution 4.0 International License.