Analisis Dinamik pada Model Matematika SVEIBR dengan Kontrol Optimal Untuk Pengendalian Penyebaran Penyakit Kolera

Agusyarif Rezka Nuha, Resmawan Resmawan, Sri Lestari Mahmud, Asriadi Asriadi, Andi Agung, Sri Istiyarti Uswatun Chasanah

Abstract


Cholera is an infectious disease that attacks the human digestive system and can cause death. This article discusses the research results related to the mathematical model of the spread of cholera in the form of an optimal control system by combining three control strategies: vaccination, quarantine, and environmental sanitation. Pontryagin's maximum principle is applied to obtain optimal conditions based on the control strategy applied. Referring to the optimal conditions set, the model was solved numerically using the Runge-Kutta Order 4 method to describe the theoretical results. The calculation results show that applying the three control strategies in controlling the spread of cholera positively impacts reducing the number of cases of infection so that disease transmission can be discontinued.

Keywords


Quarantine; Optimum Control; SVEIBR Model; Sanitation; Vaccination; Cholera

Full Text:

PDF

References


J. D. Clemens, G. B. Nair, T. Ahmed, F. Qadri, and J. Holmgren, “Cholera,” Lancet, vol. 390, no. 10101, pp. 1539–1549, 2017, doi: 10.1016/S0140-6736(17)30559-7.

S. Swaroop and R. Pollitzer, “Cholera studies. 2. World incidence.,” Bull. World Health Organ., vol. 12, no. 3, pp. 311–358, 1955.

A. Muslimah, “Wabah Kolera Di Jawa Timur Tahun 1918-1927,” J. Pendidik. Sej., vol. 4, no. 3, 2016, [Online]. Available: http://www.univmed.org/wp-

World Health Organization, “Cholera,” 2022. https://www.who.int/news-room/fact-sheets/detail/cholera (accessed Jan. 12, 2023).

World Health Organization, “Cholera,” 2022. http://www.emro.who.int/health-topics/cholera-outbreak/cholera-outbreaks.html (accessed Jan. 12, 2023).

M. Z. Ndii, Pemodelan Matematika. Yogyakarta: Deepublish, 2018.

S. P. Sari and E. Arfi, “Analisis Dinamik Model SIR Pada Kasus Penyebaran Penyakit Corona Virus Disease-19 (COVID-19),” Indones. J. Appl. Math., vol. 1, no. 2, p. 61, 2021, doi: 10.35472/indojam.v1i2.354.

D. Prodanov, Analytical solutions and parameter estimation of the SIR epidemic model. Elsevier Inc., 2022. doi: 10.1016/B978-0-32-390504-6.00015-2.

S. L. Khalaf and H. S. Flayyih, “Analysis, predicting, and controlling the COVID-19 pandemic in Iraq through SIR model,” Results Control Optim., vol. 10, no. January, p. 100214, 2023, doi: 10.1016/j.rico.2023.100214.

X. Wang, D. Gao, and J. Wang, “Influence of human behavior on cholera dynamics,” Math. Biosci., vol. 267, pp. 41–52, 2015, doi: 10.1016/j.mbs.2015.06.009.

N. S. Abdul, L. Yahya, R. Resmawan, and A. R. Nuha, “Dynamic Analysis of The Mathematical Model Of The Spread Of Cholera With Vaccination Strategies,” BAREKENG J. Ilmu Mat. dan Terap., vol. 16, no. 1, pp. 281–292, Mar. 2022, doi: 10.30598/barekengvol16iss1pp279-290.

N. S. Abdul, L. Yahya, R. Resmawan, and A. R. Nuha, “Dynamic Analysis of the Mathematical Model of the Spread of Cholera With Vaccination Strategies,” BAREKENG J. Ilmu Mat. dan Terap., vol. 16, no. 1, pp. 281–292, 2022, doi: 10.30598/barekengvol16iss1pp279-290.

X. Tian, R. Xu, and J. Lin, “Mathematical Analysis of A Cholera Infection Model With Vaccination Strategy,” Appl. Math. Comput., vol. 361, pp. 517–535, 2019, [Online]. Available: https://doi.org/10.1016/j.amc.2019.05.055

M. M. Wagner, A. W. Moore, and R. M. Aryel, “Case Detection, Outbreak Detection, and Outbreak Characterization,” in Handbook of Biosurveillance, California, USA: Elsevier Academic Press, 2005.

J. Deen, M. A. Mengel, and J. D. Clemens, “Epidemiology of cholera,” Vaccine, vol. 38, pp. A31–A40, 2020, doi: 10.1016/j.vaccine.2019.07.078.

A. R. Nuha and R. Resmawan, “Analisis Model Matematika Penyebaran Penyakit Kolera Dengan Mempertimbangkan Masa Inkubasi,” J. Ilm. Mat. dan Terap., vol. 17, no. 2, pp. 212–229, 2020, doi: https://doi.org/10.22487/2540766X.2020.v17.i2.15200.

C. Sun and Y. H. Hsieh, “Global analysis of an SEIR model with varying population size and vaccination,” Appl. Math. Model., vol. 34, no. 10, pp. 2685–2697, 2010, doi: 10.1016/j.apm.2009.12.005.

A. T. Crooks and A. B. Hailegiorgis, “An agent-based modeling approach applied to the spread of cholera,” Environ. Model. Softw., vol. 62, pp. 164–177, 2014, doi: 10.1016/j.envsoft.2014.08.027.

A. I. Abioye et al., “Mathematical model of COVID-19 in Nigeria with optimal control,” Results Phys., vol. 28, p. 104598, Sep. 2021, doi: 10.1016/j.rinp.2021.104598.

Resmawan, M. Eka, Nurwan, and N. Achmad, “Analisis Kontrol Optimal Pada Model Matematika Penyebaran Pengguna Narkoba Dengan Faktor Edukasi,” J. Ilm. Mat. DAN Terap., vol. 17, no. 2, pp. 238–248, Nov. 2020, doi: 10.22487/2540766X.2020.v17.i2.15201.

O. H. Lerma, L. R. L. Guarachi, S. M. Palacios, and D. G. Sánchez, An Introduction to Optimal Control Theory: The Dynamic Programming Approach, vol. AC-12, no. 6. Springer International Publishing, 2023. doi: 10.1109/TAC.1967.1098723.

N. U. Ahmed and S. Wang, Optimal Control of Dynamic Systems Driven by Vector Measures. Springer International Publishing, 2021. doi: 10.1007/978-3-030-82139-5.

W. Cheney and D. Kincaid, Numerical Mathematics and Comouting. Thomson Brooks/Cole, 2008.




DOI: https://doi.org/10.34312/euler.v11i1.20611

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Agusyarif Rezka Nuha, Resmawan Resmawan, Sri Lestari Mahmud, Asriadi Asriadi, Andi Agung, Sri Istiyarti Uswatun Chasanah

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:


                         EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 Email: euler@ung.ac.id
 +6287743200854 (Call/SMS/WA)
 Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.