Analisis Dinamik pada Model Matematika SVEIBR dengan Kontrol Optimal Untuk Pengendalian Penyebaran Penyakit Kolera
Abstract
Keywords
Full Text:
PDFReferences
J. D. Clemens, G. B. Nair, T. Ahmed, F. Qadri, and J. Holmgren, “Cholera,” Lancet, vol. 390, no. 10101, pp. 1539–1549, 2017, doi: 10.1016/S0140-6736(17)30559-7.
S. Swaroop and R. Pollitzer, “Cholera studies. 2. World incidence.,” Bull. World Health Organ., vol. 12, no. 3, pp. 311–358, 1955.
A. Muslimah, “Wabah Kolera Di Jawa Timur Tahun 1918-1927,” J. Pendidik. Sej., vol. 4, no. 3, 2016, [Online]. Available: http://www.univmed.org/wp-
World Health Organization, “Cholera,” 2022. https://www.who.int/news-room/fact-sheets/detail/cholera (accessed Jan. 12, 2023).
World Health Organization, “Cholera,” 2022. http://www.emro.who.int/health-topics/cholera-outbreak/cholera-outbreaks.html (accessed Jan. 12, 2023).
M. Z. Ndii, Pemodelan Matematika. Yogyakarta: Deepublish, 2018.
S. P. Sari and E. Arfi, “Analisis Dinamik Model SIR Pada Kasus Penyebaran Penyakit Corona Virus Disease-19 (COVID-19),” Indones. J. Appl. Math., vol. 1, no. 2, p. 61, 2021, doi: 10.35472/indojam.v1i2.354.
D. Prodanov, Analytical solutions and parameter estimation of the SIR epidemic model. Elsevier Inc., 2022. doi: 10.1016/B978-0-32-390504-6.00015-2.
S. L. Khalaf and H. S. Flayyih, “Analysis, predicting, and controlling the COVID-19 pandemic in Iraq through SIR model,” Results Control Optim., vol. 10, no. January, p. 100214, 2023, doi: 10.1016/j.rico.2023.100214.
X. Wang, D. Gao, and J. Wang, “Influence of human behavior on cholera dynamics,” Math. Biosci., vol. 267, pp. 41–52, 2015, doi: 10.1016/j.mbs.2015.06.009.
N. S. Abdul, L. Yahya, R. Resmawan, and A. R. Nuha, “Dynamic Analysis of The Mathematical Model Of The Spread Of Cholera With Vaccination Strategies,” BAREKENG J. Ilmu Mat. dan Terap., vol. 16, no. 1, pp. 281–292, Mar. 2022, doi: 10.30598/barekengvol16iss1pp279-290.
N. S. Abdul, L. Yahya, R. Resmawan, and A. R. Nuha, “Dynamic Analysis of the Mathematical Model of the Spread of Cholera With Vaccination Strategies,” BAREKENG J. Ilmu Mat. dan Terap., vol. 16, no. 1, pp. 281–292, 2022, doi: 10.30598/barekengvol16iss1pp279-290.
X. Tian, R. Xu, and J. Lin, “Mathematical Analysis of A Cholera Infection Model With Vaccination Strategy,” Appl. Math. Comput., vol. 361, pp. 517–535, 2019, [Online]. Available: https://doi.org/10.1016/j.amc.2019.05.055
M. M. Wagner, A. W. Moore, and R. M. Aryel, “Case Detection, Outbreak Detection, and Outbreak Characterization,” in Handbook of Biosurveillance, California, USA: Elsevier Academic Press, 2005.
J. Deen, M. A. Mengel, and J. D. Clemens, “Epidemiology of cholera,” Vaccine, vol. 38, pp. A31–A40, 2020, doi: 10.1016/j.vaccine.2019.07.078.
A. R. Nuha and R. Resmawan, “Analisis Model Matematika Penyebaran Penyakit Kolera Dengan Mempertimbangkan Masa Inkubasi,” J. Ilm. Mat. dan Terap., vol. 17, no. 2, pp. 212–229, 2020, doi: https://doi.org/10.22487/2540766X.2020.v17.i2.15200.
C. Sun and Y. H. Hsieh, “Global analysis of an SEIR model with varying population size and vaccination,” Appl. Math. Model., vol. 34, no. 10, pp. 2685–2697, 2010, doi: 10.1016/j.apm.2009.12.005.
A. T. Crooks and A. B. Hailegiorgis, “An agent-based modeling approach applied to the spread of cholera,” Environ. Model. Softw., vol. 62, pp. 164–177, 2014, doi: 10.1016/j.envsoft.2014.08.027.
A. I. Abioye et al., “Mathematical model of COVID-19 in Nigeria with optimal control,” Results Phys., vol. 28, p. 104598, Sep. 2021, doi: 10.1016/j.rinp.2021.104598.
Resmawan, M. Eka, Nurwan, and N. Achmad, “Analisis Kontrol Optimal Pada Model Matematika Penyebaran Pengguna Narkoba Dengan Faktor Edukasi,” J. Ilm. Mat. DAN Terap., vol. 17, no. 2, pp. 238–248, Nov. 2020, doi: 10.22487/2540766X.2020.v17.i2.15201.
O. H. Lerma, L. R. L. Guarachi, S. M. Palacios, and D. G. Sánchez, An Introduction to Optimal Control Theory: The Dynamic Programming Approach, vol. AC-12, no. 6. Springer International Publishing, 2023. doi: 10.1109/TAC.1967.1098723.
N. U. Ahmed and S. Wang, Optimal Control of Dynamic Systems Driven by Vector Measures. Springer International Publishing, 2021. doi: 10.1007/978-3-030-82139-5.
W. Cheney and D. Kincaid, Numerical Mathematics and Comouting. Thomson Brooks/Cole, 2008.
DOI: https://doi.org/10.34312/euler.v11i1.20611
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Agusyarif Rezka Nuha, Resmawan Resmawan, Sri Lestari Mahmud, Asriadi Asriadi, Andi Agung, Sri Istiyarti Uswatun Chasanah
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:
EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI |
Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia |
Email: euler@ung.ac.id |
+6287743200854 (Call/SMS/WA) |
Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. |