Analisis Kelayakan Kredit Menggunakan Classification Tree dengan Teknik Random Oversampling

Lo Mei Ly Vebriyanti, Shantika Martha, Wirda Andani, Setyo Wira Rizki

Abstract


Credit is providing money or bills based on the agreement between a bank and another party. Lending is inseparable from bad credit risk, so credit analysis must be conducted on prospective debtors before approving a proposed loan. This research aims to analyze creditworthiness using a Classification Tree as a classification method with Random Oversampling to overcome imbalanced data. This study uses secondary data on the status of debtors from a bank in West Kalimantan. Research data amounted to 800 data samples consisting of collectability variables as target variables and 10 independent variables, namely limit, rate, tenor, total installments, age, salary, premium and admin, agency, type credit, and type need. The Classification Tree method with Random Oversampling is used to overcome imbalanced data. Classification begins with data preprocessing, then the data is divided into training and test data with proportions of 70:30, 80:20 and 90:10 for each treatment without Random Oversampling and with Random Oversampling. Next, a classification model is formed using training data, and the classification model is validated using test data. After that, an overall evaluation of the model is carried out to determine the best model used in the classification process. Based on the research results, the best model is the model Classification Tree with Random Oversampling in proportion 70:30, with an accuracy value of 89.17%, specificity of 75.00%, and recall of 89.66%. The model can be used to classify current and non-current debtor data. The most influential variable in classifying debtor status is the total installment variable.

Keywords


Creditworthiness; Bad Debt; Debtors; Classification Tree; Imbalanced Data

Full Text:

PDF

References


K. Fatmawati, A. P. Windarto, Solikhun, and M. R. Lubis, “Analisa SPK dengan Metode AHP dalam Menentukan Faktor Konsumen dalam Melakukan Kredit Barang,” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 1, no. 1, pp. 314–321, Oct. 2017, doi: http://dx.doi.org/10.30865/komik.v1i1.515.

N. Iriadi and H. Leidiyana, “Prediksi Pinjaman Kredit dengan Support Vector Machine dan K-Nearest Neighbors pada Koperasi Serba Usaha,” Jurnal Penelitian Ilmu Komputer, System Embedded & Logic, vol. 01, no. 02, pp. 115–124, 2013.

N. L. Hanun and A. U. Zailani, “Penerapan Algoritma Klasifikasi Random Forest untuk Penentuan Kelayakan Pemberian Kredit di Koperasi Mitra Sejahtera,” Infotech: Journal of Technology Information, vol. 6, no. 1, pp. 7–14, Jun. 2020, doi: http://dx.doi.org/10.37365/jti.v6i1.61.

A. A. Arifiyanti and E. D. Wahyuni, “SMOTE: Metode Penyeimbang Kelas pada Klasifikasi Data Mining,” Jurnal Sistem Informasi dan Telematika (Telekomunikasi, Multimedia dan Informatika), vol. 15, no. 1, pp. 34–39, Feb. 2020, doi: http://dx.doi.org/10.36448/jsit.v13i1.2539.

J. Prasetya, “Penerapan Klasifikasi Naive Bayes dengan Algoritma Random Oversampling dan Random Undersampling pada Data Tidak Seimbang Cervical Cancer Risk Factors,” Leibniz: Jurnal Matematika, vol. 2, no. 2, pp. 11–22, Jul. 2022, doi: http://dx.doi.org/10.59632/leibniz.v2i2.173.

R. D. Fitriani, H. Yasin, and Tarno, “Penanganan Klasifikasi Kelas Data Tidak Seimbang dengan Random Oversampling Pada Naive Bayes (Studi Kasus: Status Peserta KB IUD di Kabupaten Kendal),” Jurnal Gaussian, vol. 10, no. 1, pp. 11–20, Feb. 2021, doi: http://dx.doi.org/10.14710/j.gauss.v10i1.30243.

Z. W. Mardika, M. A. Mukid, and H. Yasin, “Pembentukan Pohon Klasifikasi Biner dengan Algoritma Cart (Classification and Regression Trees) (Studi Kasus: Kredit Macet di PD. BPR-BKK Purwokerto Utara),” Jurnal Gaussian, vol. 5, no. 3, pp. 583–592, 2016, doi: https://doi.org/10.14710/j.gauss.5.3.583-592.

Z. K. Malta and Sutikno, “Analisis Karakteristik Tingkat Kesejahteraan di Kota Surabaya Menggunakan Metode Pohon Klasifikasi,” Jurnal Sains dan Seni ITS, vol. 8, no. 2, pp. D424–D431, 2019, doi: http://dx.doi.org/10.12962/j23373520.v8i2.46867.

N. Handayani, H. Wahyono, J. Trianto, and D. S. Permana, “Prediksi Tingkat Risiko Kredit dengan Data Mining Menggunakan Algoritma Decision Tree C.45,” JURIKOM (Jurnal Riset Komputer), vol. 8, no. 6, p. 198−204, Dec. 2021, doi: http://dx.doi.org/10.30865/jurikom.v8i6.3643.

B. Gunawan, H. S. Pratiwi, and E. E. Pratama, “Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes,” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 4, no. 2, p. 113, Dec. 2018, doi: http://dx.doi.org/10.26418/jp.v4i2.27526.

R. K. Dinata, Safwandi, N. Hasdyna, and N. Azizah, “Analisis K-Means Clustering pada Data Sepeda Motor,” Informatics Journal, vol. 5, no. 1, pp. 10–17, 2020, doi: https://doi.org/10.19184/isj.v5i1.17071.

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J-SAKTI (Jurnal Sains Komputer dan Informatika), vol. 5, no. 2, pp. 697–711, Sep. 2021, doi: http://dx.doi.org/10.30645/j-sakti.v5i2.369.

M. D. Muafa and L. Iswari, “Pengembangan Aplikasi Berbasis Web dengan Rshiny untuk Data Klasifikasi Menggunakan Metode Naive Bayes,” AUTOMATA, vol. 3, no. 1, 2022.

A. Maksum and D. Swanjaya, “Perbandingan Antara Metode Decision Tree Dan Support Vector Machine Pada Model Rekomendasi Mobil Bekas,” in Prosiding SEMNAS INOTEK (Semiar Nasional Inovasi Teknologi), 2021, pp. 167–173.

B. Purnama, Pengantar Machine Learning. Bandung: Informatika Bandung, 2019.

R. Amelia, Indahwati, Erfiani, A. Fitrianto, and A. Rizki, “Komparasi Teknik Undersampling dan Oversampling pada Regresi Logistik Biner dalam Menduga Faktor Determinan Berhenti Merokok Penduduk Lanjut Usia,” Jurnal TIMES, vol. 10, no. 2, pp. 1–11, Dec. 2021.

A. N. Kholifah and N. Insani, “Analisis Klasifikasi pada Nasabah Kredit Koperasi X Menggunakan Decision Tree C4.5 dan Naïve Bayes,” Jurnal Kajian dan Terapan Matematika, vol. 5, no. 6, pp. 1–8, 2016.




DOI: https://doi.org/10.37905/euler.v12i1.24182

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Lo Mei Ly Vebriyanti, Shantika Martha, Wirda Andani, Setyo Wira Rizki

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:


                         EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 Email: euler@ung.ac.id
 +6287743200854 (WhatsApp Only)
 Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.

slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor