Meir Keeler's Fixed-Point Theorem in Complex-Valued Modular Metric Space
Abstract
In this paper, we introduce the notion of Meir-Keeler contraction mapping, which is defined in complex-valued modular metric space. Some properties of sequences in this space, which are convergence, Cauchyness and completeness, are used to prove the fixed-point theorem under this mapping. Additionally, the Delta_2-type condition is also defined as the sufficient condition in order to have a unique fixed point.
Keywords
Full Text:
PDFReferences
T. Suzuki, “A generalized Banach contraction principle that characterizes metric completeness” Proceedings of the American Mathematical Society, vol. 136, no. 5, pp. 1861-1869, 2007. doi: https://doi.org/10.1090/S0002-9939-07-09055-7.
Y. U. Gaba, C. A. Agyingi, B. S. Choudhury dan P. Maity, “Generalized Banach contraction mapping principle in generalized metric spaces with a ternary relation,” Surveys in Mathematics and its Applications, vol. 14, pp. 159-171, 2019.
J. Merryfield dan J. D. Stein, “A generalization of the Banach Contraction Principle,” Journal of Mathematical Analysis and Applications, vol. 273, pp. 112-120, 2002. doi: https://doi.org/10.1016/S0022-247X(02)00215-9.
V. V. Nalawade dan U. Dolhare, “Generalization of Banach Contraction Mapping Principle and Fixed-Point Theorem by Altering Distances between the Points,” International Journal of Research and Analytical Reviews, vol. 4, no. 3, pp. 19-26, 2017. doi: https://doi.org/10.1155/2008/406368.
M. Abtahi, “Suzuki-type fixed point theorems for generalized contraction mappings that characterize metric completeness,” Bulletin of the Iranian Mathematical Society, vol. 41, no. 4, pp. 931-943, 2015.
R. George dan M. Khan, “On Presic Type Extension of Banach Contraction Principle,” International Journal of Mathematical Analysis, vol. 5, no. 21, pp. 1019-1024, 2011.
L. B. Ciric dan S. B. Presic, “On Presic type generalisation of Banach Contraction mapping Principle,” Acta Mathematica Universitatis Comenianae, vol. LXXVI, no. 2, pp. 143-147, 2007.
S. Sedghi, N. Sobhe dan A. Aliouche, “A generalization of fixed point theorems in S-metric spaces,” Matematički Vesnik, vol. 64, no. 3, pp. 258-266, 2012.
N. Kir dan H. Kiziltun, “On Some well known fixed point theorems in b-Metric spaces,” Turkish Journal of Analysis and Number Theory, vol. 1, pp. 13-16, 2013. doi: https://doi.org/10.12691/tjant-1-1-4.
Z. Mustafa, M. Khandagjy dan W. Shatanawi, “Fixed point results on complete G-metric spaces,” Studia Scientiarum Mathematicarum Hungarica, vol. 48, no. 3, pp. 304-319, 2011. doi: https://doi.org/10.1155/2009/283028.
A. Azam, B. Fisher dan M. Khan, “Common fixed point theorems in complex valued metric spaces,” Numerical Functional Analysis and Optimization, vol. 32, no. 3, pp. 243-253, 2011.
K. Wongkum, P. Chaipunya dan P. Kumam, “Some Analogies of the Banach Contraction Principle in Fuzzy Modular Spaces,” The Scientific World Journal, pp. 1-4, 2013. doi: https://doi.org/10.1155/2013/205275.
A. Meir dan J. Keeler, “A theorem on contraction mappings.,” Journal of Mathematical Analysis and Applications , vol. 28, pp. 326-329, 1969. doi: https://doi.org/10.1016/0022-247X(69)90031-6.
M. Kiftiah dan Supama, “Fixed point theorems for modular contraction mappings on modulared spaces,” International Journal of Mathematical Analysis, vol. 7, no. 20, pp. 965-972, 2013. doi: https://doi.org/10.12988/ijma.2013.13094.
U. Aksoya, E. Karapınara, I. M. Erhana dan V. Rakocevic, “Meir-Keeler Type Contractions on Modular Metric Spaces,” Filomat, vol. 32, no. 10, p. 3697–3707, 2018. doi: https://doi.org/10.2298/FIL1810697A.
K. Ozkan, U. Gurdal dan A. Mutlu, “Some Fixed Point Theorems on Complex Valued Modular Metric Spaces with an Application,” Communications Faculty Of Science University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 2, pp. 690-701, 2021. doi: https://doi.org/10.31801/cfsuasmas.727771.
M. Kiftiah dan Yudhi, “Teorema Titik Tetap untuk Pemetaan Kannan dan Chatterjea pada Ruang Metrik Modular Bernilai Kompleks,” EduMatSains Jurnal Pendidikan Matematika dan Sains, vol. 7, no. 2, pp. 363-373, 2023. doi: https://doi.org/10.33541/edumatsains.v7i2.4219.
A. A. Abdou dan M. A. Khamsi, “Fixed points of multivalued contraction mappings in modular metric spaces,” Fixed Point Theory and Applications, vol. 249, 2014. doi: https://doi.org/10.1186/1687-1812-2014-249.
DOI: https://doi.org/10.37905/euler.v12i1.25126
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Mariatul Kiftiah, Yudhi
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:
EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI |
Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia |
Email: euler@ung.ac.id |
+6287743200854 (WhatsApp Only) |
Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. |