Implementasi Artificial Neural Network (ANN) dalam Memprediksi Nilai Tukar Rupiah terhadap Dolar Amerika

Adam Indra Sakti, Lianda Saputra, Helen Suhendra, Nikken Halim, Irfaliani Alviari, Muhammad Rozan Nur Ilham, Marwah Hotimah Nada Putri, Desy Yuliana Dalimunthe

Abstract


The exchange rate of one country's currency against other countries takes an important role in the development and economic activities for a nation. This condition of the Indonesian currency exchange rate, namely the rupiah, is now continuously increasing, meaning that the exchange rate is weakening and experiencing depreciation. Apart from that, the rupiah exchange rate also experiences fluctuations, so forecasting is needed to find solutions to problems that will arise if the currency exchange rate increases. This research purpose is to find the best of network archictecture and to predict the selling rate of the rupiah (Rp) per 1USD for one year. The forecasting method used in this research is using an Artificial Neural Network (ANN) with Backpropagation algorithm. This method is suitable for use in time series analysis because the algorithm is able to adjust the data and has a relatively small error. The data used is the rupiah exchange rate against the USD in the form of time series data, which from March 1, 2019 to February 28, 2024. The data scenario of 90% training and 10% testing at the training stage obtained the best architecture 4-20-1 with MSE is 0.0010385. The data scenario is 80% training and 20% testing where in the training the best architecture is 4-25-1 with an MSE of 0.00089412. The data scenario is 70% training & 30% testing where in the training the best architecture is 4-25-1 with an MSE of 0.00099221. Thus, the prediction prices used are predictions for the 80% training data scenario and 20% testing data, because the accuracy results (MSE) are better than the other two scenarios.

Keywords


Exchange Rate; Prediction; ANN; Backpropagation; MSE

Full Text:

PDF

References


E. Wijaya, “Analisis Faktor-Faktor yang Mempengaruhi Nilai Tukar Rupiah Periode 1999Q1-2019Q2,” J. Samudra Ekon. dan Bisnis, vol. 11, no. 2, pp. 197–209, 2020, doi: 10.33059/jseb.v11i2.1919.

Kholid Mawardi, “Dampak Nilai Tukar Mata Uang Terhadap Perdagangan Internasional,” Ocean Eng., vol. 2, no. 1, pp. 88–102, 2023, [Online]. Available: https://doi.org/10.58192/ocean.v2i2.959

V. Singgih, “Memahami Dampak Berantai Pelemahan Rupiah,” BBC News Indonesia, 2024. https://www.bbc.com/indonesia/articles/c4n1rgwe14no

D. D. Anjani, C. Prakasiwi, and A. P. Windarto, “Analisis Penerapan Jaringan Saraf Tiruan Backpropagation dalam Memprediksi Penjualan Produk Es Kristal,” J. Informatics, Electr. Electron. Eng., vol. 3, no. 1, pp. 153–163, 2023, doi: 10.47065/jieee.v3i1.1610.

R. Maiyuriska, “Penerapan Jaringan Syaraf Tiruan dengan Algoritma Backpropagation dalam Memprediksi Hasil Panen Gabah Padi,” J. Inform. Ekon. Bisnis, vol. 4, pp. 28–33, 2022, doi: 10.37034/infeb.v4i1.115.

M. Thoriq, “Peramalan Jumlah Permintaan Produksi Menggunakan Jaringan Saraf Tiruan Algoritma Backpropagation,” J. Inf. dan Teknol., vol. 4, pp. 27–32, 2022, doi: 10.37034/jidt.v4i1.178.

G. P. B. Are, S. H. Sitorus, J. Prof, H. Hadari, and N. Pontianak, “Prediksi Nilai Tukar Mata Uang Rupiah Terhadap Dolar Amerika Menggunakan Metode Hidden Markov Model,” Coding J. Komput. dan Apl., vol. 08, no. 01, pp. 44–54, 2020.

V. R. Prasetyo, H. Lazuardi, A. A. Mulyono, and C. Lauw, “Penerapan Aplikasi RapidMiner Untuk Prediksi Nilai Tukar Rupiah Terhadap US Dollar Dengan Metode Linear Regression,” J. Nas. Teknol. dan Sist. Inf., vol. 7, no. 1, pp. 8–17, 2021, doi: 10.25077/teknosi.v7i1.2021.8-17.

R. A. Nadir and R. N. Sukmana, “Sistem Prediksi Harga Emas Berdasarkan Data Time Series Menggunakan Metode Artificial Neural Network (ANN),” Digit. Transform. Technol., vol. 3, no. 2, pp. 426–437, 2023, doi: 10.47709/digitech.v3i2.2877.

Bank Indonesia, “Kurs Transaksi BI.”

K. Gurney, An Introduction to Neural Networks, 1st Editio. UCL Press, 2017. doi: https://doi.org/10.1201/9781315273570.

D. L. Rahakbauw, “Analysis of Backpropagation Artificial Neural Network to forecast Rupiah and Dollar,” J. Ilmu Mat. dan Terap., vol. 8, no. 2, pp. 27–32, 2014.

Muslimin, “Peramalan Beban Listrik Jangka Menengah Pada Sistem Kelistrikan Kota Samarinda,” Jiti, vol. 14, no. 09, pp. 113–121, 2015.

A. P. Windarto et al., Jaringan Saraf Tiruan: Algoritma Prediksi dan Implementasi, vol. 53, no. 9. 2019.

Y. Andriani, H. Silitonga, and A. Wanto, “Analisis jaringan syaraf tiruan untuk prediksi volume ekspor dan impor migas di indonesia,” Regist. J. Ilm. Teknol. Sist. Inf., vol. 4, no. 1, pp. 30–40, 2018, doi: 10.26594/register.v4i1.1157.

H. H. Nuha, “Mean Squared Error ( MSE ) dan Penggunaannya Ringkasan Penjelasan Referensi,” Soc. Sci. Res. Netw., vol. 52, pp. 2021–2022, 2021.

G. I. Marthasari, S. A. Asiti, and Y. Azhar, “Prediksi Data Time-series menggunakan Jaringan Syaraf Tiruan Algoritma Backpropagation Pada Kasus Prediksi Permintaan Beras,” J. Inform. J. Pengemb. IT, vol. 6, no. 3, pp. 187–193, 2021.

R. Ryandhi, “Penerapan Metode Artificial Neural Network (ANN) Untuk Peramalan Inflasi Di Indonesia,” Theses, p. 231, 2020.

R. H. Dananjaya, S. Sutrisno, and S. Fitriady, “Penerapan Artificial Neural Network (Ann) Dalam Memprediksi Kapasitas Dukung Fondasi Tiang,” Matriks Tek. Sipil, vol. 10, no. 4, p. 419, 2022, doi: 10.20961/mateksi.v10i4.65034.

B. Sutijo, “Pemilihan Hubungan Input-Node pada Jaringan Saraf ( Input-Nodes Link Selection on Radial Basis Funtion Neural Network ),” pp. 55–61, 2017.

I. Ambarwati, “Metode Radial Basis Function Neural Network (RBFNN) untuk Peramalan Kunjungan Wisatawan dengan Perbandingan Kombinasi Fungsi Pelatihan. PRISMA, Prosiding Seminar Nasional Matematika 6,” Prisma, vol. 6, pp. 687–693, 2023, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/.




DOI: https://doi.org/10.37905/euler.v12i2.26654

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Adam Indra Sakti, Lianda Saputra, Helen Suhendra, Nikken Halim, Irfaliani Alviari, Muhammad Rozan Nur Ilham, Marwah Hotimah Nada Putri, Desy Yuliana Dalimunthe

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:


                         EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 Email: euler@ung.ac.id
 +6287743200854 (WhatsApp Only)
 Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.

slot online slot gacor slot