Support Vector Machine-Radial Basis Function Kernel and K-Nearest Neighbor Differences for Classification Superior Varieties of Rice in Indonesia

Alissa Chintyana, Kertanah Kertanah, Siti Hariati Hastuti, Husnul Khotimah

Abstract


Rice is the primary food source for the Indonesian population, making it a priority commodity in Indonesia. Rice production plays a significant role in Indonesia's economic development, with high-yield rice varieties being crucial for enhancing national rice output. Ensuring food security requires the selection of superior rice varieties with optimal quality. This study evaluates various high-yield rice varieties, including INPARA, INPARI, INPAGO, and HIPA, based on characteristic data collected in 2023. Machine learning algorithms, increasingly central to data analysis, were applied, leveraging labeled data suitable for supervised learning methods. During the pre-processing stage, it was determined that the data did not meet the linearity assumption. Thus the Support Vector Machine (SVM) algorithm was modified with the Radial Basis Function (RBF) kernel to better handle non-linear data. Additionally, the K-Nearest Neighbor (KNN) algorithm, a traditional method, was used for comparison. The results indicate that SVM with the RBF kernel achieved faster processing times and the accuracy value reaches 96%, nearly 10% higher than the KNN algorithm.

Keywords


Classification; Superior Rice Varieties; Support Vector Machine

Full Text:

PDF

References


A. Faqih, ”Analisis Komoditas Unggulan Sektor Pertanian”, JPPI (Jurnal Penelitian Pendidikan Indonesia), vol. 7, no. 4, pp. 550-559, 2021, doi: 10.29210/020211242.

W. Waluyo, S. Suparwoto, J. Johanes, and N. Wahyu, ”Development of Production of Sources of New Upper Variety of Seeds of Rice Results in South Sumatera Province”, Jurnal KaliAgri, vol. 3, no. 2, pp. 51-60, 2022, doi: 10.56869/kaliagri.v3i2.413.

A. Rachman, M. T. Furqon, and F. Ramdani, ”Klasifikasi Varietas Unggul Padi menggunakan Algoritma C4.5”, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 9, pp. 9244-9249, 2019.

J. Han, M. Kamber, and J. Pei, Data Mining Concepts and Techniques, 3rd ed. Boston: Morgan Kaufmann Publisher, 2012.

M. Arhami and M. Nasir, Data Mining Algoritma dan Implementasi, Yogyakarta: Penerbit ANDI, 2020.

Y. P. Baita, ”Perbandingan Algoritme Klasifikasi untuk Prediksi Kinerja Siswa di Kelas”, INFOS Journal-Information System Journal, vol. 1, no. 4, pp. 1–4, 2019.

I. K. Hasan, R. Resmawan, and J. Ibrahim, “Perbandingan K-Nearest Neighbor dan Random Forest dengan Seleksi Fitur Information Gain untuk Klasifikasi Lama Studi Mahasiswa,” Indonesian Journal of Applied Statistics, vol. 5, no. 1, pp. 58–66, May 2022, doi: 10.13057/ijas.v5i1.58056.

A. Setiawan, ”Perbandingan Penggunaan Jarak Manhattan, Jarak Euclid, dan Jarak Minkowski dalam Klasifikasi menggunakan Metode KNN pada Data Iris”, Jurnal Sains dan Edukasi Sains, vol. 5, no. 4, pp. 28-37, 2022, doi: 10.24246/juses.v5i1p28-37.

I. F. Yulianti, ”Penerapan Metode SVM dan BPNN dalam Pengklasifikasian PUS di Jawa Barat”, Jurnal Statistika dan Aplikasinya, vol. 4, no. 1, pp. 23-34, 2020.

B. Clarke, E. Fokoue, and H. H. Zhang, Principles and Theory for Data Mining and Machine Learning. New York: Springer, 2009.

A. C. Imanda, N. Hidayat, and M. T. Furqon, ”Klasifikasi Kelompok Varietas Unggul Padi menggunakan Modified K-Nearest Neighbor”, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 8, pp. 2392-2399, 2018.

M. R. A. Nasution and M. Hayaty, ”Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter”, Jurnal Informatika, vol. 6, no. 2, pp. 212-218, 2019, doi: 10.31294/ji.v6i2.5129.

P. R. Sihombing, ”Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di Indonesia”, Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 20, no. 2, pp. 417-426, 2021, doi: 10.30812/matrik.v20i2.1174.

I. Asana and N. Yanti, ”Sistem Klasifikasi Pengajuan Kredit dengan Metode Support Vector Machine”, Jurnal Sistem Cerdas, vol. 6, no. 2, pp. 123-133, 2023.

T. Wurijanto, H. B. Setiawan, and A. B. Tjandrarini, ”Penerapan Model CRISPDM pada Prediksi Nasabah Kredit yang Berisiko menggunakan Algoritma Support Vector Machine”, Jurnal Ilmiah Scroll: Jendela Teknologi Informasi, vol. 10, no. 1, pp. 1-6, 2022, doi: 10.30640/ejournalscroll.v10i1.291.

V. D. Yunanda and N. Hendrastuty, ”Perbandingan Kernel Polynomial dan RBF pada Algoritma SVM untuk Analisis Sentimen Skincare di Indonesia”, Jurnal Media Informatika Budidarma, vol. 8, no. 2, pp. 726-735, 2024.

K. Karthikeya and K. H. Sudarshan, ”Prediction of Agriculture Crops using KNN Algorithm”, International Journal of Multidisplinary Educational Research, vol. 10, no. 5, pp. 36-39, 2021.

H. Henderi, T. Wahyuningsih, and E. Rahwanto, ”Comparison of Min-Max Normalization and Z-score Normalization in the K-Nearest Neighbor (KNN) Algorithm to Test the Accuracy of Types of Breast Cancer”, International Journal of Informatics and Information Systems, vol. 4, no. 1, pp. 13-20, 2021.

R. A. Johnson and G. K. Bhattacharyya, Statistics Principles and Methods, 6th ed. Hoboken: John Wiley & Sons, Inc.

A. Chintyana, A. Choiruddin, and Sutikno, “Cox Point Process with Ridge Regularization: A Better Approach for Statistical Modeling of Earthquake Occurrences,” in Soft Computing in Data Science, 2023, pp. 163–177, doi: 10.1007/978-981-99-0405-1_12.

P. P. V. T. Pertanian, Deskripsi Varietas Tanaman yang telah Dilepas Triwulan IV Tahun 2023. Jakarta: Kementerian Pertanian, 2023.




DOI: https://doi.org/10.37905/euler.v12i2.27605

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Alissa Chintyana, Kertanah, Siti Hariati Hastuti, Husnul Khotimah

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:


                         EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 Email: euler@ung.ac.id
 +6287743200854 (WhatsApp Only)
 Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.

slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor