Evaluasi Kinerja Model Random Forest dan LightGBM untuk Klasifikasi Status Imunisasi Hepatitis B (HB-0) pada Balita
Abstract
Hepatitis B (HB-0) immunization in infants is an important step in preventing the transmission of hepatitis B from an early age and improving public health. This study aims to classify the HB-0 immunization status of infants in West Java Province. The method used is the Random Forest and LightGBM algorithms. The research results showed that the Random Forest model had a balanced accuracy of 0.8443, which was slightly higher than LightGBM (0.8357). This indicated that Random Forest performed better in classifying the HB-0 immunization status of infants in West Java Province, accurately distinguishing between those who received and did not receive the immunization without bias toward either class. The global analysis using the Random Forest model identified six feature importance that contributed the most to the model’s performance: BCG immunization status, ownership of the KIA/KMS book, mother’s age, household head’s age, age at first pregnancy, and regency or city classification of residence. The feature importance analysis using SHAP for the first observation showed that BCG immunization status, ownership of the KIA/KMS book, and regency or city classification of residence increased the likelihood of infants receiving immunization. Conversely, the number of children (4), mother’s age (37 years), and household head’s age (40 years) increased the likelihood of infants not receiving immunization. This study is expected to provide data-driven insights for the government to design more effective interventions to improve immunization coverage and child health in Indonesia while also supporting the achievement of global health targets.
Keywords
Full Text:
PDFReferences
R. A. Johnson, and D. W. Wichern, Applied Multivariate Statistical Analysis (6th Edition). London: Pearson Education, 2007.
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. New York: Springer, 2009, doi: 10.1007/978-0-387-84858-7.
L. Breiman, "Random Forests," Mach Learn, vol. 45, no. 1, pp. 5–32, 2001, doi: 10.1023/A:1010933404324.
A. Liaw, and M. Wiener, "Classification and Regression by randomForest," R News, vol. 2/3, pp. 18-22, Dec. 2002. [Online]. Available: https://journal.r-project.org/articles/RN-2002-022/RN-2002-022.pdf. [Accessed: 8-Dec-2024].
G. Ke, et al., "LightGBM: A Highly Efficient Gradient Boosting Decision Tree," in Conference on Neural Information Processing Systems, USA, 2017. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2017. [Accessed: 8-Dec-2024].
N. K. Singh, and M. Nagahara, "LightGBM, SHAP, and Correlation-Matrix-Heatmap-Based Approaches for Analyzing Household Energy Data: Towards Electricity Self-Sufficient Houses," Energies (Basel), vol. 17, no. 17, pp. 4518, Sep. 2024, doi: 10.3390/en17174518.
A. Khairunnisa, K. A. Notodiputro, and B. Sartono, "A Comparative Study of Random Forest and Double Random Forest Models from View Points of Their Interpretability," Scientific Journal of Informatics, vol. 11, no. 1, pp. 207–218, Feb. 2024, doi: 10.15294/sji.v11i1.48721.
K.T. Nguyen, T.N. Tran, and H.T. Nguyen, "Research on the Influence of Hyperparameters on the LightGBM Model in Load Forecasting," Engineering, Technology & Applied Science Research, vol. 14, no. 5, pp. 17005–17010, Oct. 2024, doi: 10.48084/etasr.8266.
N. Anggraini, S. J. Putra, L. K. Wardhani, F. D. U. Arif, N. Hakiem, and I. M. Shofi, "A Comparative Analysis of Random Forest, XGBoost, and LightGBM Algorithms for Emotion Classification in Reddit Comments," JURNAL TEKNIK INFORMATIKA, vol. 17, no. 1, pp. 88–97, May 2024, doi: 10.15408/jti.v17i1.38651.
F. Doshi-Velez, and B. Kim, "Towards A Rigorous Science of Interpretable Machine Learning," arXiv preprint arXiv:1702.08608, Feb 2017.
S. Lundberg, and S.-I. Lee, "A Unified Approach to Interpreting Model Predictions," arXiv preprint arXiv:1705.07874, May 2017.
World Health Organization, "Hepatitis B," 2024. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/hepatitis-b. [Accessed: 8-Dec-2024].
KEMENKES RI, "Profil Kesehatan Indonesia 2022," 2023. [Online]. Available: https://kemkes.go.id/id/profil-kesehatan-indonesia-2022. [Accessed: 8-Dec-2024].
K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buhmann, "The balanced accuracy and its posterior distribution," in International Conference on Pattern Recognition, 2010, pp. 3121–3124. doi: 10.1109/ICPR.2010.764.
M. Tang, Z. Peng, and H. Wu, "Fault Detection for Pitch System of Wind Turbine-Driven Doubly Fed Based on IHHO-LightGBM," Applied Sciences, vol. 11, no. 17, pp. 8030, Aug. 2021, doi: 10.3390/app11178030.
S. M. Lundberg, P. G. Allen, and S.-I. Lee, "A Unified Approach to Interpreting Model Predictions," in Conference on Neural Information Processing Systems, USA, 2017. [Online]. Available: https://papers.nips.cc/paper_files/paper/2017. [Accessed: 8-Dec-2024].
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, ”SMOTE: Synthetic Minority Over-sampling Technique,” Journal of Artificial Intelligence Research, vol. 16, pp. 321–357, Jun. 2002, doi: 10.1613/jair.953.
Haibo He, and E. A. Garcia, ”Learning from Imbalanced Data,” IEEE, vol. 21, no. 9, pp. 1263–1284, Sep. 2009, doi: 10.1109/TKDE.2008.239.
M. Du, et al., ”A Skew-Sensitive Evaluation Framework for Imbalanced Data Classification,” arXiv preprint, arXiv:2010.05995, Oct. 2020.
C. Molnar, G. Casalicchio, and B. Bischl, ”Interpretable Machine Learning,” in Workshops of the European Conference on Machine Learning and Knowledge Discovery in Databases, Belgium, 2020, doi: 10.1007/978-3-030-65965-3_28.
T. Chen, and C. Guestrin, ”XGBoost: A Scalable Tree Boosting System,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, USA, 2016, doi: 10.1145/2939672.2939785.
A. Agresti, and C. Franklin, Statistics: The Art and Science of Learning from Data, 3rd ed., Boston: Pearson, 2013.
F. Duran, F. Wijaya, Y. R. Hulu, M. Harahap, and A. Prabowo, ”Perbandingan Kinerja Algoritma Random Forest Classifier dan LightGBM Classifier untuk Prediksi Penyakit Jantung,” Data Sciences Indonesia, vol. 3, no. 2, pp. 98–103, May 2024, doi: 10.47709/dsi.v3i2.3831.
A. Scheid, et al., ”Adjuvant effect of Bacille Calmette-Guérin on hepatitis B vaccine immunogenicity in the preterm and term newborn,” Frontiers in Immunology, vol. 9, Jan. 2018, doi: 10.3389/fimmu.2018.00029.
L. Lensiana, Y. Putri, and T. Rossita, ”Hubungan Pemanfaatan Buku KIA dengan Kepatuhan Imunisasi Dasar Lengkap pada Bayi Usia 0-11 Bulan di Puskesmas Kampung Delima Kabupaten Rejang Lebong Tahun 2024,” Journal Student Scientific, vol. 3, no. 1, pp. 77–84, Jan. 2024.
S. Sukrisno, and M. Nadjib, ”Analisis Faktor-Faktor yang Berhubungan dengan Akses Imunisasi Hepatitis B 0-7 Hari (HB 0) pada Bayi Baru Lahir di Indonesia Tahun 2016,” Media Kesehatan Masyarakat Indonesia, vol. 21, no. 4, pp. 248–260, Aug. 2022, doi: 10.14710/mkmi.21.4.248-260.
A. I. Rahmawati, and C. U. Wahjuni, ”Faktor yang Mempengaruhi Kelengkapan Imunisasi Dasar di Kelurahan Krembangan Utara,” Jurnal Berkala Epidemiologi, vol. 2, no. 1, pp. 59–70, Jan. 2014.
M. S. Atteraya, I. H. Song, N. B. Ebrahim, S. Gnawali, E. Kim, and T. Dhakal, ”Inequalities in Childhood Immunisation in South Asia,” International Journal of Environmental Research and Public Health, vol. 20, no. 3, Feb. 2023, doi: 10.3390/ijerph20031755.
KEMENKES RI, Buku Kesehatan Ibu dan Anak (KIA), 2024. [Online]. Available: https://regulasi.bkpk.kemkes.go.id/detail/9d1e6348-456f-4aeb-ab0ed3842f713f2b. [Accessed: 8-Dec-2024].
DOI: https://doi.org/10.37905/euler.v13i1.29762
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Ummul Auliyah Syam, Irdayanti, Indah Magfirrah, Bagus Sartono, Aulia Rizki Firdawanti

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:
EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI |
![]() | Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia |
![]() | Email: euler@ung.ac.id |
![]() | +6287743200854 (WhatsApp Only) |
![]() | Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. |