Perbandingan Metode Triple Exponential Smoothing Additive dan Additive Parameter Damped untuk Peramalan Indeks Harga Konsumen
Abstract
The purpose of this study is to compare the TES Additive and TES Additive Parameter Damped methods to forecast the Consumer Price Index (CPI) of Manado City. The data used are secondary data in the form of CPI from the Central Statistics Agency of North Sulawesi, covering the period from January 2020 to December 2023. The forecasting accuracy indicators used are Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). The results of the analysis show that the TES Additive method has better performance in forecasting the CPI of Manado City compared to TES Additive Damped Parameter. This is because the MAPE value in the TES Additive method testing data is smaller, indicating a higher accuracy of the forecasting results. The CPI prediction for 2024 shows a stable upward trend every month. This increase is expected to be driven by economic activity that is starting to recover after the pandemic, increased public consumption, and seasonal inflation approaching religious holidays and the end of the year. The highest CPI value is predicted to reach 117.32 in December 2024.
Keywords
Full Text:
PDFReferences
Badan Pusat Statistik, “Indeks Harga Konsumen dan Inflasi Kota Pangkalpinang,” Pangkalpinang, 2022. Accessed: Mar. 12, 2025. [Online]. Available: www.bps.go.id
S. Suarsih, N. A. Achsani, and N. Nuryantono, “Dampak Perubahan Nilai Tukar terhadap Indeks Harga Konsumen Bahan Makanan di Indonesia,” Jurnal Ekonomi dan Pembangunan Indonesia, vol. 17, no. 1, pp. 1–14, Jul. 2016, doi: 10.21002/jepi.v17i1.548.
F. E. Mokorimban, N. Nainggolan, and Y. A. R. Langi, “Penerapan Metode Autoregressive Integrated Moving Average (ARIMA) dalam Model Intervensi Fungsi Step terhadap Indeks Harga Konsumen di Kota Manado,” d’Cartesian: Jurnal Matematika dan Aplikasi, vol. 10, no. 2, pp. 91–99, Sep. 2021, doi: 10.35799/dc.10.2.2021.34969
A. N. Febriyanti and N. A. K. Rifai, “Metode Triple Exponential Smoothing Holt-Winters untuk Peramalan Jumlah Penumpang Kereta Api di Pulau Jawa,” Bandung Conference Series: Statistics, vol. 2, no. 2, 2022, doi: 10.29313/bcss.v2i2.3560.
N. D. Fazira and A. Kesumawati, “Peramalan Jumlah Pekerja Migran Indonesia Menggunakan Metode Triple Exponential Smoothing with Damped Parameter,” Emerging Statistics and Data Science Journal, vol. 2, no. 2, pp. 175–183, May 2024, doi: 10.20885/esds.vol2.iss.2.art15.
P. F. A. Tambuwun, N. Nainggolan, and Y. A. R. Langi, “Peramalan Banyaknya Penumpang Bandar Udara Internasional Sam Ratulangi Manado Dengan Metode Winter’s Exponential Smoothing dan Seasonal ARIMA,” d’Cartesian: Jurnal Matematika dan Aplikasi, vol. 12, no. 1, pp. 14–20, 2023, doi: 10.35799/dc.12.1.2023.48066.
R. K. Nur, I. Amri, M. Haris, S. Amrullah, S. Jannah, S. Wizatia, and F. Rohim, “Metode Triple Exponential Smoothing Untuk Peramalan Indeks Harga Konsumen Kota Surabaya Tahun 2020–2023,” Prosiding Seminar Nasional Sains Data, vol. 4, no. 1, pp. 615–623, Sep. 2024, doi: 10.33005/senada.v4i1.294.
M. A. Santosa, N. L. A. K. Y. Sarja, and R. K. Wiyati, “Perbandingan Metode Holt Winter Additive dan Metode Holt Winter Additive Damped dalam Peramalan Jumlah Pendaftaran Mahasiswa,” Jurnal Ilmiah Rekayasa dan Manajemen Sistem Informasi, vol. 5, no. 1, pp. 93–98, 2019, doi: 10.24014/rmsi.v5i1.7378.
P. M. A. Khusna, “Perbandingan Metode Triple Exponential Smoothing Holtwinters Model Additive Dan Multiplicative Untuk Prediksi Indeks Harga Konsumen,” Universitas Islam Negeri Maulana Malik Ibrahim, Malang, 2024.
L. D. Arumningsih and M. Y. Darsyah, “Peramalan Indeks Harga Konsumen Kota Malang Tahun 2014–2016 dengan Menggunakan Metode Moving Average dan Exponential Smoothing Holt-Winter,” in Prosiding Seminar Nasional Mahasiswa Unimus, 2018, pp. 310–315.
Badan Pusat Statistik, “Indeks Harga Konsumen Menurut Bulan Kota Manado,” Manado, 2023.
I. Falani, “Penentuan Nilai Parameter Metode Exponential Smoothing dengan Algoritma Genetik dalam Meningkatkan Akurasi Forecasting,” CESS (Journal of Computer Engineering, System and Science), vol. 3, no. 1, pp. 14–16, Jan. 2018, doi: 10.24114/cess.v3i1.8268.
G. A. R. J. Hyndman, Forecasting: Principles and Practice, 2nd ed. Melbourne, Australia: OTexts, 2018. Accessed: Mar. 12, 2025. [Online]. Available: https://otexts.com/fpp2/.
E. S. Gardner and E. McKenzie, “Forecasting Trends in Time Series,” Management Science, vol. 31, no. 10, pp. 1237–1246, 1985, doi: 10.1287/mnsc.31.10.1237.
Badan Pusat Statistik, “Indeks Harga Konsumen Menurut Bulan Kota Manado,” Accessed: Mar. 12, 2025. [Online]. Available: https://sulut.bps.go.id/id/statistics.
A. Haritsah, “Implementasi Model STL Seasonal Trend Decomposition Based On Loess Dan ARIMA Untuk Prediksi Konsentrasi Kualitas Udara,” Institut Teknologi Sepuluh Nopember, Surabaya, 2015.
DOI: https://doi.org/10.37905/euler.v13i1.30928
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Rohelio Yoel Wawo, Deiby Tineke Salaki, Hanny Andrea Huibert Komalig, Djoni Hatidja, Marline Sofiana Paendong, Tohap Manurung

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:
EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI |
![]() | Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia |
![]() | Email: euler@ung.ac.id |
![]() | +6287743200854 (WhatsApp Only) |
![]() | Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. |