Optimal Control for a COVID-19 and Tuberculosis Co-Infection Model with Asymptomatic COVID-19 Carriers

Sailah Ar Rizka, Regina Wahyudyah Sonata Ayu, Dewi Ika Ainurrofiqoh, Merysa Puspita Sari, Nadia Kholifia

Abstract


This study applies optimal control theory to a deterministic co-infection model of COVID-19 and tuberculosis (TB) with asymptomatic COVID-19 carriers, who are assumed to be less infectious. The optimal control strategy aims to minimize intervention costs and reduce infections by implementing five control measures, including prevention and vaccination of COVID-19, treatment of both symptomatic and asymptomatic COVID-19-infected individuals, treatment of COVID-19 and active TB co-infected individuals, and prevention of treatment failure in active TB cases. Pontryagin's minimum principle is used to characterize the necessary conditions for optimal control in reducing infections. Numerical results demonstrate the effectiveness of the optimal control strategy in suppressing diseases. The incremental cost-effectiveness ratio (ICER) for different combinations of control measures is evaluated, showing that the intervention strategy performs best when all control measures are used.

Keywords


Co-infection; COVID-19; Nonlinear ODE Model; Optimal Control; Tuberculosis

Full Text:

PDF

References


WHO, "Global tuberculosis report," 2022.

WHO, "WHO Coronavirus (COVID-19) dashboard," 2023. [Online]. Available: https://covid19.who.int/

WHO, "Global tuberculosis programme: Tuberculosis and COVID-19," 2020. [Online]. Available: https://www.who.int/teams/global-tuberculosis-programme/covid-19

Q. Wang, S. Guo, X. Wei, Q. Dong, N. Xu, H. Li, J. Zhao, and Q. Sun, "Global prevalence, treatment and outcome of tuberculosis and COVID-19 coinfection: a systematic review and meta-analysis," BMJ Open, vol. 12, no. 6, 2017, doi: 10.1136/bmjopen-2021-059396.

TB/COVID-19 Global Study Group, "Tuberculosis and COVID-19 co-infection: description of the global cohort," The European respiratory journal, vol. 59, no. 3, 2022, doi: 10.1183/13993003.02538-2021.

W. M. Song, J. Y. Zhao, Q. Y. Zhang, S. Q. Liu, X. H. Zhu, Q. Q. An, T. T. Xu, S. J. Li, J. Y. Liu, N. N. Tao, Y. Liu, Y. F. Li, and H. C. Li, "COVID-19 and Tuberculosis Coinfection: An Overview of Case Reports/Case Series and Meta-Analysis," Frontiers in Medicine, vol. 8, 2021, doi: 10.3389/fmed.2021.657006.

S. Colby and R. Shah, "TB reactivation following COVID-19 infection," Chest, vol. 162, no. 4, 2022, doi: 10.1016/j.chest.2022.08.255.

M. Khayat, H. Fan, and Y. Vali, "COVID-19 promoting the development of active tuberculosis in a patient with latent tuberculosis infection: A case report," Respiratory Medicine Case Reports, vol. 32, 2021, doi: 10.1016/j.rmcr.2021.101344.

P. Daneshvar, B. Hajikhani, F. Sameni, N. Noorisepehr, F. Zare, N. Bostanshirin, S. Yazdani, M. Goudarzi, S. Sayyari, and M. Dadashi, "COVID-19 and tuberculosis coinfection: An overview of case reports/case series and meta-analysis of prevalence studies," Heliyon, vol. 9, no. 2, 2023, doi: 10.1016/j.heliyon.2023.e13637.

A. Ahmad, U. Atta, M. Farman, K. S. Nisar, H. Ahmad, and E. Hincal, "Investigation of lassa fever with relapse and saturated incidence rate: mathematical modeling and control," Modelling Earth Systems and Environment, vol. 11, no. 202, 2025, doi: 10.1007/s40808-025-02370-7.

M. Meena, M. Purohit, Shyamsunder, S. Purohit, D. Baleanu, and D. Suthar, "A novel fractionalized inveigation of tuberculosis disease," Applied Mathematics in Science and Engineering, vol. 32, no. 1, 2024, doi: 10.1080/27690911.2024.2351229.

Shyamsunder, S. Bhatter, K. Jangid, A. Abidemi, K. Owolabi, and S. Purohit, "A new fractional mathematical model to study the impact of vaccination on COVID-19 outbreaks," Decision Analytics Journal, vol. 6, 2023, doi: 10.1016/j.dajour.2022.100156.

F. K. Alalhareth, U. Atta, A. H. Ali, A. Ahmad, and M. H. Alharbi, "Analysis of leptospirosis transmission dynamics with environmental effects and bifurcation using fractional-order derivative," Alexandria Engineering Journal, vol. 80, pp. 372–382, 2023, doi: http://dx.doi.org/10.1016/j.aej.2023.08.063.

K. G. Mekonen, S. F. Balcha, L. L. Obsu, and A. Hassen, "Mathematical modeling and analysis of TB and COVID-19 coinfection," Journal of Applied Mathematics, pp. 1–20, 2022, doi: 10.1155/2022/2449710.

K. G. Mekonen, L. L. Obsu, and T. G. Habtemichael, "Optimal control analysis for the coinfection of COVID-19 and TB," Arab Journal of Basic and Applied Sciences, vol. 29, no. 1, pp. 175–192, 2022, doi: 10.1080/25765299.2022.2085445.

M. S. Goudiaby, L. D. Gning, M. L. Diagne, B. M. Dia, H. Rwezaura, and J. M. Tchuenche, "Optimal control analysis of a COVID-19 and tuberculosis co-dynamics model," Informatics in Medicine Unlocked, vol. 28, 2022, doi: 10.1016/j.imu.2022.100849.

A. B. Diabaté, B. Sangaré, and O. Koutou, "Optimal control analysis of a COVID-19 and Tuberculosis (TB) co-infection model with an imperfect vaccine for COVID-19," SeMA Journal, 2023, doi: 10.1007/s40324-023-00330-8.

Z. S. Kifle and L. L. Obsu, "Co-dynamics of COVID-19 and TB with COVID-19 vaccination and exogenous reinfection for TB: An optimal control application," Infectious Disease Modelling, vol. 8, no. 2, 2023, doi: 10.1016/j.idm.2023.05.005.

M. M. Ojo, O. J. Peter, E. F. D. Goufo, and K. S. Nisar, "A mathematical model for the co-dynamics of COVID-19 and tuberculosis," Mathematics and Computers in Simulation, vol. 207, pp. 499–520, 2023, doi: 10.1016/j.matcom.2023.01.014.

L. Pontryagin, V. Boltyanskii, R. Gramkrelidze, and E. Mischenko, "The mathematical theory of optimal processes." New York – London: John Wiley & Sons, 1962, doi: 10.1002/zamm.19630431023.

S. Lenhart and J. T. Workman, "Optimal control applied to biological models." New York: Chapman and Hall/CRC, 2007, doi: 10.1201/9781420011418.

G. G. Mwanga, H. Haario, and V. Capasso, "Optimal control problems of epidemic systems with parameter uncertainties: Application to a malaria two-age-classes transmission model with asymptomatic carriers," Mathematical Biosciences, vol. 261, pp. 1–12, 2015, doi: 10.1016/j.mbs.2014.11.005.

M. S. Kumar, D. Surendran, M. S. Manu, P. S. Rakesh, and S. Balakrishnan, "Mortality due to TB-COVID-19 coinfection in India," International Journal of Tuberculosis and Lung Disease, vol. 25, no. 3, pp. 250–251, 2021, doi: 10.5588/ijtld.20.0947.

K. A. Alene, K. Wangdi, and A. C. A. Clements, "Impact of the COVID-19 pandemic on tuberculosis control: an overview," Tropical Medicine and Infectious Disease, vol. 5, no. 3, 2020, doi: 10.3390/tropicalmed5030123.

Y. Chen, Y. Wang, J. Fleming, Y. Yu, Y. Gu, C. Liu, L. Fan, X. Wang, M. Cheng, L. Bi, and Y. Liu, "Active or latent tuberculosis increases susceptibility to COVID-19 and disease severity," MedRxiv, 2020, doi: 10.1101/2020.03.10.20033795.

B. J. Schroers, "Ordinary differential equations: a practical guide." New York: Cambridge University Press, 2011, doi: 10.1017/CBO9781139057707.

A. B. Gumel, E. A. Iboi, C. N. Ngonghala, and G. A. Ngwa, "Mathematical assessment of the roles of vaccination and non-pharmaceutical interventions on COVID-19 dynamics: a multigroup modeling approach," MedRxiv, pp. 1–24, 2021, doi: 10.1101/2020.12.11.20247916.

F. B. Agusto, I. V. Erovenko, A. Fulk, Q. Abu-Saymeh, D. Romero-Alvarez, J. Ponce, S. Sindi, O. Ortega, J. M. S. Onge, and A. T. Peterson, "To isolate or not to isolate: The impact of changing behavior on COVID-19 transmission," BMC Public Health, vol. 22, no. 138, 2022, doi: 10.1186/s12889-021-12275-6.

E. A. Iboi, C. N. Ngonghala, and A. B. Gumel, "Will an imperfect vaccine curtail the COVID-19 pandemic in the U.S.?" Infectious Disease Modelling, vol. 5, pp. 510–524, 2020, doi: 10.1016/j.idm.2020.07.006.

A. Omame, M. Abbas, and C. P. Onyenegecha, "A fractional-order model for COVID-19 and tuberculosis co-infection using Atangana-Baleanu derivative," Chaos, Solitons, & Fractals, vol. 153, 2021, doi: 10.1016/j.chaos.2021.111486.

M. L. Diagne, H. Rwezaura, S. Y. Tchoumi, and J. M. Tchuenche, "A mathematical model of COVID-19 with vaccination and treatment," Computational and Mathematical Methods in Medicine, 2021, doi: 10.1155/2021/1250129.

D. Okuonghae and S. E. Omosigho, "Analysis of a mathematical model for tuberculosis: What could be done to increase case detection," Journal of Theoretical Biology, vol. 269, no. 1, pp. 31–45, 2011, doi: 10.1016/j.jtbi.2010.09.044.

S. J. Brozak, B. Pant, S. Safdar, and A. B. Gumel, "Dynamics of COVID-19 pandemic in India and Pakistan: A metapopulation modelling approach," Infectious Disease Modelling, vol. 6, pp. 1173–1201, 2021, doi: 10.1016/j.idm.2021.10.001.

J. David, S. A. Iyaniwura, P. Yuan, Tan, J. Kong, and H. Zhu, "Modeling the potential impact of indirect transmission on COVID-19 epidemic," MedRxiv, 2021, doi: 10.1101/2021.01.28.20181040.

F. B. Agusto, E. Numfor, K. Srinivasan, E. A. Iboi, A. Fulk, J. M. S. Onge, and A. T. Peterson, "Impact of public sentiments on the transmission of COVID-19 across a geographical gradient," PeerJ, 2023, doi: 10.7717/peerj.14736.

WHO, "Guidelines for the management of sexually transmitted infections," 2003.

P. Driessche and J. Watmough, "Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission," Mathematical Biosciences, vol. 180, no. 1–2, pp. 29–48, 2002, doi: 10.1016/S0025-5564(02)00108-6.

Q. Wang, Y. Cao, X. Liu, Y. Fu, J. Zhang, Y. Zhang, L. Zhang, X. Wei, and L. Yang, "Systematic review and meta-analysis of tuberculosis and COVID-19 co-infection: Prevalence, fatality, and treatment considerations," PLoS Neglected Tropical Diseases, vol. 18, no. 5, pp. 1–19, 2024, doi: 10.1371/journal.pntd.0012136.

W. H. Fleming and R. W. Rishel, "Deterministic and stochastic optimal control." New York: Springer, 2012, doi: 10.1007/978-1-4612-6380-7.




DOI: https://doi.org/10.37905/euler.v13i1.31076

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Sailah Ar Rizka, Regina Wahyudyah Sonata Ayu, Dewi Ika Ainurrofiqoh, Merysa Puspita Sari, Nadia Kholifia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:


 EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 Email: euler@ung.ac.id
 +6287743200854 (WhatsApp Only)
 Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.