Analisis Regresi Logistik Biner dan Random Forest untuk Prediksi Faktor-Faktor Stunting di Pulau Jawa
Abstract
This study aimed to compare the performance and variable identification capabilities of Binary Logistic Regression and Random Forest models in classification analysis. The results showed that both methods consistently identified variables X1, X3, and X4 as the most influential factors in predicting outcomes. However, Binary Logistic Regression also identified variable X6 as statistically significant, which was not reflected in the Random Forest model. In terms of model performance, Random Forest outperformed Binary Logistic Regression across all evaluation metrics, including accuracy, precision, sensitivity, specificity, and balanced accuracy. These findings suggested that Random Forest was more effective in handling complex data structures and delivering optimal classification results, while Binary Logistic Regression excelled in providing deeper interpretability of variable relationships. Therefore, the choice of method should have aligned with the analytical objectives, and combining both approaches could have yielded more comprehensive insights.
Keywords
Full Text:
PDFReferences
D. A. Freedman, R. Pisani, and R. A. Purves, Statistics, 4th ed. New York, NY: W. W. Norton & Company, 2007.
D. W. Hosmer, S. Lemeshow, and R. X. Sturdivant, Applied Logistic Regression, 3rd ed. Hoboken, NJ: Wiley, 2013.
L. Breiman, "Random forests," Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. New York, NY: Springer, 2009.
R. Alfonsus and A. Rofiq, "Predictive analysis of stunting using random forest algorithm," J. Teknol. dan Sist. Komput., vol. 10, no. 3, pp. 421–427, 2022.
UNICEF, Improving Child Nutrition: The achievable imperative for global progress. United Nations Children's Fund, 2013.
Kementerian Kesehatan Republik Indonesia, Hasil Survei Status Gizi Indonesia (SSGI) Tahun 2022. Jakarta: Kemenkes RI, 2022.
Badan Kependudukan dan Keluarga Berencana Nasional (BKKBN), Laporan Indeks Khusus Penanganan Stunting 2023. Jakarta: BKKBN, 2023.
F. Wicaksono and T. Harsanti, "Determinants of stunting in Indonesia: A spatial analysis at the district level," Kesmas: J. Kesehat. Masyarakat Nasional, vol. 16, no. 2, pp. 72–79, 2021.
N. Sari and A. Syafiq, "Analisis faktor-faktor sosial ekonomi terhadap stunting di Indonesia," J. Gizi dan Pembangunan, vol. 18, no. 1, pp. 10–18, 2023.
D. Rahmawati, A. Firmansyah, and D. Lestari, "Implementasi random forest untuk prediksi stunting pada balita menggunakan data sosial ekonomi," J. Teknol. Inf. dan Ilmu Komput. (JTIIK), vol. 10, no. 2, pp. 180–188, 2023.
Food and Agriculture Organization of the United Nations, Prevalence thresholds for wasting, overweight and stunting in children under 5 years, 2019.
G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts, "Understanding variable importances in forests of randomized trees," in Advances in Neural Information Processing Systems 26 (NIPS 2013), 2013, pp. 431–439.
J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, 3rd ed. San Francisco, CA: Morgan Kaufmann, 2012.
M. Kuhn and K. Johnson, Applied Predictive Modeling. New York, NY: Springer, 2013.
A. Field, Discovering Statistics Using IBM SPSS Statistics, 4th ed. London: Sage Publications, 2013.
D. N. Gujarati and D. C. Porter, Basic Econometrics, 5th ed. New York, NY: McGraw-Hill Education, 2009.
D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to Linear Regression Analysis, 5th ed. Hoboken, NJ: Wiley, 2012.
S. Menard, Logistic Regression: From Introductory to Advanced Concepts and Applications, 2nd ed. Thousand Oaks, CA: SAGE Publications, 2010.
M. García, C. Fernández, and M. Rodríguez, "Logistic regression based in-service assessment of mobile web browsing service quality acceptability," EURASIP Journal on Wireless Communications and Networking, vol. 2020, no. 1, Article 43, 2020.
S. Tenny and M. R. Hoffman, "Odds ratio," in StatPearls, StatPearls Publishing, 2025.
J. S. Aguilar-Ruiz, "The certainty ratio Cp: A novel metric for assessing the reliability of classifier predictions," arXiv preprint, arXiv:2411.01973, 2024.
A. Asro, J. Chaidir, Chairuddin, and J. Friadi, "Evaluasi kinerja algoritma klasifikasi dalam studi kasus prediksi kelulusan di Universitas XYZ," Zona Teknik: Jurnal Ilmiah, vol. 19, no. 1, pp. 15–22, Feb. 2025.
P. Biecek and T. Burzykowski, Explanatory Model Analysis: Explore, Explain, and Examine Predictive Models. Boca Raton, FL: CRC Press, 2021.
S. M. Lundberg and S.-I. Lee, "A unified approach to interpreting model predictions," Advances in Neural Information Processing Systems, vol. 30, pp. 4765–4774, 2017.
DOI: https://doi.org/10.37905/euler.v13i2.31680
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Rizqi Dwi Yuniarsyih R.A, Rizqi Annafi Muhadi, Anwar Fitrianto, Pika Silvianti

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi has been indexed by:
EDITORIAL OFFICE OF EULER : JURNAL ILMIAH MATEMATIKA, SAINS, DAN TEKNOLOGI |
![]() | Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo Jl. Prof. Dr. Ing. B. J. Habibie, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia |
![]() | Email: [email protected] |
![]() | +6287777-586462 (WhatsApp Only) |
![]() | Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi (p-ISSN: 2087-9393 | e-ISSN:2776-3706) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. |