Focus and Scope
Jambura Journal of Biomathematics (JJBM) aims to become the leading journal in Southeast Asia in presenting original research articles and review papers about mathematical approaches to explain biological phenomena. Jambura Journal of Biomathematics (JJBM) will accept high-quality articles utilizing the mathematical analysis to gain biological understanding in the fields of, but not restricted to
Ecology
Mathematics plays a crucial role in solving ecological problems by providing tools to quantify, model, and analyze complex ecological systems. Differential equations, probability theory, statistics, and optimization methods are commonly used mathematical frameworks in ecological research. These tools allow ecologists to develop models that describe population dynamics, species interactions, ecosystem processes, and the effects of environmental factors. By calibrating these models with empirical data, researchers can make predictions about the behavior of ecological systems under different scenarios, assess the impacts of human activities such as habitat destruction or climate change, and design effective conservation and management strategies. Moreover, mathematical techniques help in synthesizing large datasets, identifying patterns and trends, and uncovering underlying mechanisms governing ecological phenomena, thereby advancing our understanding of the natural world and informing decision-making for sustainable environmental stewardship.
Â
Oncology
Mathematics plays a critical role in tackling oncological problems by providing powerful analytical and computational tools to understand cancer biology, predict tumor behavior, optimize treatment strategies, and assess therapeutic outcomes. Mathematical modeling allows researchers to describe the complex dynamics of tumor growth, invasion, and metastasis, as well as the interactions between cancer cells, the immune system, and the tumor microenvironment. Differential equations, agent-based models, network theory, and machine learning techniques are commonly employed to simulate these processes and predict how tumors evolve over time, respond to different treatments, and develop resistance mechanisms. Mathematical models also aid in the design and optimization of treatment protocols, such as chemotherapy schedules, radiation dosing, and immunotherapy strategies, by predicting their efficacy and potential side effects. Moreover, mathematical approaches facilitate the analysis of large-scale genomic, proteomic, and clinical datasets, helping identify biomarkers for early detection, prognosis, and personalized treatment planning. By integrating mathematical and computational methods with experimental and clinical data, oncologists can gain deeper insights into cancer biology, improve patient outcomes, and accelerate the development of innovative therapies towards more effective cancer management.
Â
Neurobiology
Mathematics is fundamental in understanding neurobiology, providing tools for modeling the complex structure and dynamics of the nervous system, analyzing experimental data, and making predictions about neuronal function and behavior. Mathematical modeling techniques, including differential equations, stochastic processes, and computational simulations, are used to describe the biophysical properties of neurons, the dynamics of neural networks, and the mechanisms underlying neural coding and information processing. For example, mathematical models can simulate action potential generation, synaptic transmission, and synaptic plasticity, shedding light on how neurons communicate and form functional connections. Network theory and graph theory are employed to study the organization and connectivity patterns of neural circuits, revealing principles of brain architecture and information flow. Furthermore, mathematical approaches are crucial for analyzing neuroimaging data, such as functional magnetic resonance imaging (fMRI) and electroencephalography (EEG), enabling researchers to map brain activity, identify brain regions involved in specific tasks or cognitive functions, and investigate brain disorders. By integrating mathematical modeling with experimental techniques, neurobiologists can uncover the underlying principles of brain function and dysfunction, leading to insights into neurological diseases, the development of therapeutic interventions, and the design of brain-inspired artificial intelligence systems.
Â
Cell Biology
Mathematics is indispensable in understanding the behavior and dynamics of biological cells, offering tools to model cellular processes, analyze experimental data, and make predictions about cellular behavior under different conditions. Mathematical models of cellular processes range from simple biochemical reactions to complex systems involving gene regulation, signal transduction, and metabolic pathways. These models often employ ordinary differential equations, partial differential equations, and stochastic processes to describe the kinetics and interactions of biomolecules within the cell. For instance, mathematical models can elucidate how genes are regulated, how proteins interact to form cellular structures, and how signaling pathways mediate cellular responses to external stimuli. Moreover, mathematical approaches are crucial for analyzing experimental data generated from techniques such as microscopy, flow cytometry, and molecular biology assays, enabling researchers to extract quantitative information about cellular properties, dynamics, and functions. Mathematical modeling also facilitates the design and optimization of genetic circuits, synthetic biology constructs, and drug delivery systems, with applications in biotechnology and medicine. By integrating mathematical modeling with experimental biology, researchers can gain deeper insights into the complexity of cellular systems, uncover emergent properties, and address fundamental questions in cell biology, ultimately leading to advancements in healthcare, biotechnology, and our understanding of life itself.
Â
Biostatistics
Mathematics is extensively applied in biostatistics, serving as the foundation for statistical methods used to analyze biological and medical data, draw meaningful inferences, and make informed decisions in healthcare and biomedical research. Mathematical concepts such as probability theory, calculus, and linear algebra underpin statistical techniques employed in biostatistics, including hypothesis testing, regression analysis, survival analysis, and experimental design. These methods are used to analyze various types of data, including clinical trials, epidemiological studies, genomic data, and imaging data, to uncover patterns, trends, and associations related to disease risk, treatment effectiveness, and population health. Furthermore, mathematical modeling plays a crucial role in biostatistics, enabling the development of mathematical models that describe the dynamics of infectious diseases, population dynamics, and the spread of epidemics. These models help in forecasting disease outbreaks, evaluating public health interventions, and informing healthcare policies. Additionally, mathematical techniques are essential for assessing the reliability and validity of research findings, estimating sample sizes, and controlling for confounding factors in observational studies. Overall, mathematics provides the theoretical framework and analytical tools necessary for biostatisticians to address complex biological and medical questions, contributing to advancements in healthcare, disease prevention, and medical decision-making.
Â
Bioinformatics
Mathematics plays a crucial role in bioinformatics, providing the foundation for computational methods used to analyze biological data, decipher genomic information, and understand the structure and function of biological molecules. Mathematical concepts such as algorithms, probability theory, graph theory, and linear algebra are extensively applied in bioinformatics to develop computational tools and models for analyzing DNA sequences, protein structures, and biological networks. Sequence alignment algorithms, such as dynamic programming and hidden Markov models, are used to compare DNA, RNA, and protein sequences, revealing evolutionary relationships, identifying functional elements, and predicting gene functions. Mathematical techniques like machine learning and pattern recognition are employed to classify biological sequences, predict protein structures, and annotate genomic data. Furthermore, mathematical modeling is essential for simulating biological processes, such as gene regulation, metabolic pathways, and protein-protein interactions, enabling researchers to gain insights into complex biological systems and predict their behavior under different conditions. Mathematical approaches are also crucial for analyzing high-throughput data generated from techniques like next-generation sequencing, microarrays, and mass spectrometry, facilitating the discovery of biomarkers, drug targets, and disease mechanisms. By integrating mathematics with biology and computer science, bioinformatics enables researchers to harness the vast amounts of biological data available today, accelerating discoveries in genomics, personalized medicine, and biotechnology, and ultimately improving human health.
Â
Bio-engineering
Mathematics is essential in bioengineering, providing the quantitative framework for designing, analyzing, and optimizing biological systems and biomedical devices. Mathematical modeling is employed to describe the physical and biochemical processes underlying biological systems, such as tissue growth, gene expression, and drug kinetics. Differential equations, partial differential equations, and stochastic processes are commonly used to represent these processes, enabling researchers to simulate and predict the behavior of engineered biological systems. Mathematical optimization techniques are utilized to design and optimize biomedical devices and therapies, such as artificial organs, prosthetic limbs, and drug delivery systems, by maximizing performance metrics while minimizing adverse effects. Moreover, mathematical approaches are crucial for analyzing experimental data generated from biological experiments and clinical trials, allowing researchers to extract meaningful insights, identify trends, and make informed decisions. Additionally, mathematical modeling and simulation are employed to guide the development of medical imaging techniques, such as MRI, CT, and PET scans, enabling clinicians to visualize and diagnose diseases non-invasively. By integrating mathematics with biology, physics, and engineering, bioengineers can design innovative solutions to biomedical challenges, paving the way for advancements in healthcare, regenerative medicine, and personalized therapeutics.
Â
Infectious diseases
Mathematics plays a crucial role in understanding and combating infectious diseases by providing tools for modeling disease dynamics, predicting outbreaks, and evaluating intervention strategies. Mathematical models, such as compartmental models (e.g., SIR, SEIR), agent-based models, and network models, describe the transmission dynamics of infectious diseases within populations, incorporating parameters like transmission rates, contact patterns, and population demographics to simulate disease spread. By calibrating these models with epidemiological data, researchers estimate key parameters like the basic reproduction number (Râ‚€) and assess the impact of interventions like vaccination and social distancing. Moreover, mathematical approaches, including statistical methods and machine learning algorithms, analyze epidemiological data to uncover patterns, trends, and risk factors associated with infectious diseases. Overall, mathematics informs public health policies, aiding in resource allocation and timely interventions to mitigate the impact of infectious disease outbreaks.Â
Â
Renewable biological resources
Mathematics plays a pivotal role in the sustainable management of renewable biological resources by providing quantitative methods for understanding ecosystem dynamics, assessing resource availability, and optimizing resource utilization. Mathematical models, such as population dynamics models and ecosystem models, describe the interactions between renewable biological resources, including plants, animals, and microorganisms, and their environment, considering factors like population growth, species interactions, and environmental variability. These models help predict the effects of human activities, such as harvesting and habitat alteration, on resource abundance and biodiversity, guiding conservation and management efforts. Mathematical optimization techniques are used to develop strategies for sustainable resource exploitation, determining optimal harvesting rates, protected areas, and habitat restoration plans to maintain ecological integrity and meet societal needs. Additionally, statistical methods are employed to analyze monitoring data and assess the effectiveness of management interventions, facilitating adaptive management approaches for maintaining the long-term viability of renewable biological resources.Â
Genetics and population genetics
Mathematics is integral to genetics and population genetics, providing essential tools for modeling genetic inheritance, understanding evolutionary processes, and analyzing genetic variation within populations. Mathematical models, such as the Hardy-Weinberg equilibrium and the Wright-Fisher model, describe the distribution of alleles and genotypes in populations over time, considering factors like mutation, genetic drift, migration, and selection. These models help predict patterns of genetic diversity, identify regions under selective pressure, and infer demographic history. Additionally, statistical methods, including linkage and association analyses, are used to identify genetic variants associated with traits and diseases, facilitating the discovery of genes underlying complex phenotypes. Moreover, mathematical approaches, such as population genetics simulations and coalescent theory, help reconstruct evolutionary histories and infer population demographics, providing insights into human migration patterns, speciation events, and adaptation to different environments. Overall, mathematics serves as a fundamental tool for unraveling the complexities of genetic inheritance and evolution, advancing our understanding of the genetic basis of traits and diseases and informing medical genetics and conservation biology.
Section Policies
Articles
![]() |
![]() |
![]() |
Peer Review Process
- The research article submitted to this online journal will be peer-reviewed at least 2 (two) reviewers. We use double-blind peer-review process. The decision is made based on the evaluation reports from the reviewers. Whenever necessary, we ask a third reviewer to evaluate the paper.
- The accepted research articles will be available online (free download) following the journal peer-reviewing process. The final decision of articles acceptance will be made by Editors according to the Reviewer's comments. The language used in this journal is Indonesian and English.
- The decision made for the article is the result of the Editorial Board’s agreement based on the suggestions proposed by the reviewer(s) and the double-blind review process.
- Plagiarism scanning will be conducted with the help of Anti-Plagiarism Software.
- All articles published Open Access will be immediately and permanently free for everyone to read and download.
Publication Frequency
Jambura Journal of Biomathematics is published two times a year (June and December).
Open Access Policy
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.