Implementasi algoritma genetika dalam mengestimasi kepadatan populasi jackrabbit dan coyote

Dian Savitri, Ninik Wahju Hidajati, Hasan S. Panigoro

Abstract


This article studies about the parameter estimation using genetic algorithm for a Lotka-Volterra prey-predator model. The secondary data consist of the density of jackrabbit as prey and coyote as predator in Southwest Presscott–Arizona are used. As results, the Mean Absolute Percentage Error (MAPE) are computed to compare the results of parameter estimation and the real data. We have shown that MAPE for jackrabbit and coyote respectively given by 7.75424% and 7.95283%. This results show that the parameter estimation with genetic algorithm using Lotka-Volterra model is passably. Furthermore, some numerical simulations are portrayed to show each population density for the next 100 years.


Keywords


Genetic Algorithm; Prey-predator Model; Parameter Estimation; Simulation

Full Text:

PDF

References


S. Anam, “Parameters Estimation of Enzymatic Reaction Model for Biodiesel Synthesis by Using Real Coded Genetic Algorithm with Some Crossover Operations,” IOP Conference Series: Materials Science and Engineering, vol. 546, no. 5, p. 052006, 2019. DOI: 10.1088/1757-899X/546/5/052006

Z. Zukhri, Algoritma Genetika: Metode Komputasi Evolusioner untuk Menyelesaikan Masalah Optimasi. Yogyakarta: Andi Publisher, 2014. ISBN 978-979-29-2165-6

N. Tutkun, “Parameter estimation in mathematical models using the real coded genetic algorithms,” Expert Systems with Applications, vol. 36, no. 2, pp. 3342–3345, 2009. DOI: 10.1016/j.eswa.2008.01.060

E. Turban, J. Aronson, and T. Liang, Decision Support Systems and Intelligent Systems. Pearson/Prentice Hall, 2005. ISBN 9780130461063.

M. Rayungsari, A. In’am, and M. Aufin, “Genetic Algorithm to Estimate Parameters of Indonesian Population Growth Model,” in Proceedings of the International Conference on Community Development (ICCD 2020), vol. 477, no. Iccd. Paris, France: Atlantis Press, 2020. ISBN 978-94-6239-253-3 pp. 426–430. DOI: 10.2991/assehr.k.201017.094

W. Windarto, S. W. Indratno, N. Nuraini, and E. Soewono, “A comparison of binary and continuous genetic algorithm in parameter estimation of a logistic growth model,” in AIP Conference Proceedings, Symposium on BioMathematics (SYMOMATH) 2013 , 2014, p. 1587. DOI: 10.1063/1.4866550

M. Rayungsari, M. Aufin, and N. Imamah, “Parameters Estimation of Generalized Richards Model for COVID-19 Cases in Indonesia Using Genetic Algorithm,” Jambura Journal of Biomathematics, vol. 1, no. 1, pp. 25–30, 2020. DOI: 10.34312/jjbm.v1i1.6910

A. Lotka, Elements of Physical Biology. Williams & Wilkins, 1925. ISBN 9780598812681.

V. Volterra, “Variations and Fluctuations in the Numbers of Coexisting Animal Species,” in Lecture Notes in Biomathematics. Heidelberg: Springer, 1978, pp. 65–236. DOI: 10.1007/978-3-642-50151-7_9

A. A. Berryman, “The origins and evolution of predator-prey theory,” Ecology, vol. 73, no. 5, pp. 1530–1535, 1992. DOI: 10.2307/1940005

J. G. Restrepo and C. M. V. Sanchez, “Parameter estimation of a predator-prey model using a genetic algorithm,” in 2010 IEEE ANDESCON. IEEE, 2010. ISBN 978-1-4244-6740-2 pp. 1–4. DOI: 10.1109/ANDESCON.2010.5633365

M. Rayungsari, N. Imamah, A. Imaniyah, and V. B. Kusuma, “Estimasi parameter model predator-prey menggunakan algoritma genetika,” Jurnal Gammath, vol. 4, no. 2, pp. 103–112, 2019. DOI: 10.32528/gammath.v4i2.3185

Windarto, “An implementation of continuous genetic algorithm in parameter estimation of predator-prey model,” in 5th International Conference and Workshop On Basic And Applied Sciences (ICOWOBAS 2015). AIP Conference Proceedings, 2016, p. 1718. DOI: 10.1063/1.4943352

NS (Anonymous), “Jackrabbit and Coyotes two common mammals of the Southwest Prescott, Arizona,” 2013. [Online]. Available: https://drnsharma.wordpress.com/2013/03/14/predator-prey-data/ (Accessed 2022-11-12).

W. Widowati and S. Sutimin, Buku Ajar: Pemodelan Matematika. Semarang: Jurusan Matematika, FMIPA, UNDIP, 2007.

D. Goldberg, G. David Edward, D. Goldberg, and V. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, ser. Artificial Intelligence. Addison-Wesley Publishing Company, 1989. ISBN 9780201157673.

R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms, 2nd ed. Pennsylvania: John Wiley & Sons, 2004. ISBN 978-0-471-45565-3

W. E. Boyce, R. C. DiPrima, and R. C. Prima, Elementary Differential Equations and Boundary Value Problems, 10th ed. United State of America: John Willey & Sons, Inc, 2012.

J. K. Mcadoo and J. A. Young, “Jackrabbits,” Rangelands, vol. 2, no. 4, pp. 135–138, 1980.

J. C. Kilgo, C. E. Shaw, M. Vukovich, M. J. Conroy, and C. Ruth, “Reproductive characteristics of a coyote population before and during exploitation,” The Journal of Wildlife Management, vol. 81, no. 8, pp. 1386–1393, 2017.

H. S. Panigoro and E. Rahmi, “Modifikasi sistem predator-prey: dinamika model Leslie-Gower dengan daya dukung yang tumbuh logistik,” in SEMIRATA MIPAnet, 2017, pp. 94–103.

P. K. Santra, “Fear effect in discrete prey-predator model incorporating square root functional response,” Jambura Journal of Biomathematics, vol. 2, no. 2, pp. 51–57, 2021. DOI: 10.34312/jjbm.v2i2.10444

P. K. Santra, H. S. Panigoro, and G. S. Mahapatra, “Complexity of a DiscreteTime Predator-Prey Model Involving Prey Refuge Proportional to Predator,” Jambura Journal of Mathematics, vol. 4, no. 1, pp. 50–63, 2022. DOI: 10.34312/jjom.v4i1.11918

H. S. Panigoro, E. Rahmi, N. Achmad, S. L. Mahmud, R. Resmawan, and A. R. Nuha, “A discrete-time fractional-order Rosenzweig-Macarthur predatorprey model involving prey refuge,” Communications in Mathematical Biology and Neuroscience, no. 1925, pp. 1–19, 2021. DOI: 10.28919/cmbn/6586

H. S. Panigoro and D. Savitri, “Bifurkasi Hopf pada model Lotka-Volterra orde-fraksional dengan efek Allee aditif pada predator,” Jambura Journal of Biomathematics, vol. 1, no. 1, pp. 16–24, 2020. DOI: 10.34312/jjbm.v1i1.6908




DOI: https://doi.org/10.34312/jjbm.v3i1.11935

Copyright (c) 2022 Dian Savitri, Ninik Wahju Hidajati, Hasan S. Panigoro

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Biomathematics (JJBM) has been indexed by:


                          EDITORIAL OFFICE OF JAMBURA JOURNAL OF BIOMATHEMATICS

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 Email: editorial.jjbm@ung.ac.id
 +6281356190818 (Call/SMS/WA)
 Jambura Journal of Biomathematics (JJBM) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.