Qualitative analysis of a Mathematical model of COVID-19 with intervention strategies in the Philippines

Rolly Najial Apdo, Rolando Namalata Paluga


This paper focuses on the development of a mathematical model to analyze the transmission dynamics of COVID-19 in the Philippines, where the pandemic has significantly impacted the population despite several quarantine measures, testing, contact tracing, and vaccinations. The model considers the impact of contact tracing and vaccination campaigns on disease transmission. The model is analyzed qualitatively and numerically, and the results show that increasing the contact tracing rate and vaccination rate can effectively reduce the reproduction number of the virus. The disease-free equilibrium is found to be locally asymptotically stable when the basic reproduction number is less than one, and the disease-endemic equilibrium is locally asymptotically stable when the basic reproduction number is greater than one. The study suggests that a contact tracing rate greater than 0.08847694 is required to effectively manage the transmission of COVID-19 in the target population. These findings provide insights for policymakers and public health officials in developing effective strategies to mitigate the impact of the pandemic.


COVID-19; Intervention; Qualitative Analysis; Vaccination; Contact Tracing

Full Text:



World Health Organization, “COVID-19 Tracker,” https://doh.gov.ph/covid19tracker, accessed: 2023-02-27.

Department of Health, “WHO Coronavirus (COVID-19) Dashboard,” https: //covid19.who.int/, accessed: 2023-02-22.

M. C. Torres, C. A. H. Buhat, B. P. B. Dela Cruz, E. F. O. Felix, E. B. Gemida, and J. B. Mamplata, “Forecasting covid-19 cases in the Philippines using various mathematical models,” 2020. DOI: 10.1101/2020.10.07.20208421

Arcede, Jayrold P., Caga-anan, Randy L., Mentuda, Cheryl Q., and Mammeri, Youcef, “Accounting for symptomatic and asymptomatic in a seir-type model of covid-19,” Math. Model. Nat. Phenom., vol. 15, p. 34, 2020. DOI: 10.1051/mmnp/2020021

J. Macalisang, M. Caay, J. Arcede, and R. Caga-anan, “Optimal control for a covid-19 model accounting for symptomatic and asymptomatic,” Computational and Mathematical Biophysics, vol. 8, pp. 168–179, 11 2020. DOI: 10.1515/cmb-2020-0109

C. A. H. Buhat, M. C. Torres, Y. H. Olave, M. K. A. Gavina, E. F. O. Felix, G. B. Gamilla, K. V. B. Verano, A. L. Babierra, and J. F. Rabajante, “A mathematical model of covid-19 transmission between frontliners and the general public,” 2020. DOI: 10.1101/2020.03.27.20045195

J. M. Caldwell, E. de Lara-Tuprio, T. R. Teng, M. R. J. E. Estuar, R. F. R. Sarmiento, M. Abayawardana, R. N. F. Leong, R. T. Gray, J. G. Wood, L.V. Le, E. S. McBryde, R. Ragonnet, and J. M. Trauer, “Understanding covid-19 dynamics and the effects of interventions in the Philippines: A mathematical modelling study,” The Lancet Regional Health - Western Pacific, vol. 14, p. 100211, 2021. DOI: 10.1016/j.lanwpc.2021.100211

M. C. T. Lagura, R. J. A. David, and E. P. de Lara-Tuprio, Mathematical Modelling for COVID-19 Dynamics with Vaccination Class. Cham: Springer International Publishing, 2022, pp. 355–375. ISBN 978-3-031-04028-3. DOI: 10.1007/978-3-031-04028-3_23

R. L. Caga-anan, M. N. Raza, G. S. G. Labrador, E. B. Metillo, P. del Castillo, and Y. Mammeri, “Effect of vaccination to covid-19 disease progression and herd immunity,” Computational and Mathematical Biophysics, vol. 9, no. 1, pp. 262–272, 2021. DOI: 10.1515/cmb-2020-0127

H. J. Campos, M. N. Raza, J. P. Arcede, J. G. T. Martinez, and R. L. Caga-anan, “Vaccination and variants: A covid-19 multi-strain model evolution for the Philippines,” Frontiers in Applied Mathematics and Statistics, vol. 9, 2023. DOI: 10.3389/fams.2023.1029018

S. Lang, A First Course in Calculus: Chapter 6: Applications of Differentiation, ser. Springer Science, 2001.

L. Perko, Differential equations and dynamical systems, 3rd ed., vol. 7. New York, NY: Springer New York, 2001. DOI: 10.1007/978-1-4613-0003-8

V. Hutson and K. Schmitt, “Permanence and the dynamics of biological systems,” Mathematical Biosciences, vol. 111, no. 1, pp. 1-71, Sep. 1992. DOI:10.1016/0025-5564(92)90078-B

O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz, “On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations,” Journal of Mathematical Biology, vol. 28, no. 4, 1990. DOI: 10.1007/BF00178324

P. van den Driessche and J. Watmough, “Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission,” Mathematical Biosciences, vol. 180, no. 1–2, pp. 29–48, 2002. DOI: 10.1016/S0025-5564(02)00108-6

C. D. S. Estadilla, J. Uyheng, E. P. de Lara-Tuprio, T. R. Teng, J. M. R. Macalalag, and M. R. J. E. Estuar, “Impact of vaccine supplies and delays on optimal control of the covid-19 pandemic: mapping interventions for the philippines,” Infectious Diseases of Poverty, vol. 10, no. 1, p. 107, 2021. DOI: 10.1186/s40249-021-00886-5

Philippine Statistics Authority, “Birth, Marriage, and Death Statistics for 2022,” https://psa.gov.ph/content/birth-marriageand-death-statistics-2022-preliminary-31-january-2023, accessed: 2023-02-27.

DOI: https://doi.org/10.34312/jjbm.v4i1.18990

Copyright (c) 2023 Rolly Najial Apdo, Rolando Namalata Paluga

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Jambura Journal of Biomathematics (JJBM) has been indexed by:


 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 Email: editorial.jjbm@ung.ac.id
 +6281356190818 (Call/SMS/WA)
 Jambura Journal of Biomathematics (JJBM) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.