Mathematical Model and Simulation of the Spread of COVID-19 with Vaccination, Implementation of Health Protocols, and Treatment

Muhammad Manaqib, Mahmudi Mahmudi, Galuh Prayoga

Abstract


This research develops the SVEIHQR model to simulate the spread of COVID-19 with vaccination, implementation of health protocols, and treatment. The population is divided into twelve subpopulations, resulting in a mathematical model of COVID-19 in the form of a system of twelve differential equations with twelve variables. From the model, we obtain the disease-free equilibrium point, the endemic equilibrium point, and the basic reproduction number (R0). The disease-free equilibrium point is locally asymptotically stable when R0 < 1 and ∆5 > 0, where ∆5 is the fifth-order Routh-Hurwitz matrix of the characteristic polynomial of the Jacobian matrix. Additionally, an endemic equilibrium point exists when R0 > 1. The results of numerical simulations are consistent with the conducted analysis, and the sensitivity analysis reveals that the significant parameters influencing the spread of COVID-19 are the proportion of symptomatic infected individuals and the contact rate with asymptomatic infected individuals.


Keywords


COVID-19; Vaccination; Application of Health Protocols; Treatment; Stability of Equilibrium Point

Full Text:

PDF

References


A. Riadi, Pedoman Pencegahan dan Pengendalian Coronavirus Disease (COVID-19), revisi ke- ed., L. Aziza, A. Aqmarina, and M. Ihsan, Eds. Kementerian Kesehatan RI, 2019, vol. 4, 2019. DOI: 10.33654/math.v4i0.299

P. Zhou et al., “A pneumonia outbreak associated with a new coronavirus of probable bat origin,” Nature, vol. 579, no. 7798, pp. 270–273, mar 2020. DOI: 10.1038/s41586-020-2012-7

S. Olivia, J. Gibson, and R. Nasrudin, “Indonesia in the Time of Covid-19,” Bulletin of Indonesian Economic Studies, vol. 56, no. 2, pp. 143–174, 2020. DOI: 10.1080/00074918.2020.1798581

World Health Organization (WHO), “Global Table Data.” https://covid19.who.int/data, Accessed on 2023-01-24.

K. Rustandi, “Dukungan Kesmas di Masa Pandemi COVID 19,” wartaKESMAS Kementerian Kesehatan Republik Indonesia, Tech. Rep. https://www.ptonline.com/articles/how-to-get-better-mfi-results

World Health Organization (WHO), “Cumulative COVID-19 vaccination doses administered.” https://www.who.int/southeastasia/health-topics/immunization/covid-19-vaccination, Accessed 2023-01-24.

S. Anand and Y. S. Mayya, “Size distribution of virus laden droplets from expiratory ejecta of infected subjects,” Scientific Reports, vol. 10, no. 1, pp. 1–9, 2020. DOI: 10.1038/s41598-020-78110-x

P. Anfinrud, V. Stadnytskyi, C. E. Bax, and A. Bax, “Visualizing SpeechGenerated Oral Fluid Droplets with Laser Light Scattering,” New England Journal of Medicine, vol. 382, no. 21, pp. 2061–2063, 2020. DOI: 10.1056/NEJMc2007800

M. Jayaweera, H. Perera, B. Gunawardana, and J. Manatunge, “Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy,” Environmental Research, vol. 188, no. May, p. 109819, 2020. DOI: 10.1016/j.envres.2020.109819

K. S. Kwon et al., “Erratum: Correction of Text in the Article “Evidence of Long-Distance Droplet Transmission of SARS-CoV-2 by Direct Air Flow in a Restaurant in Korea”,” Journal of Korean Medical Science, vol. 36, no. 2, pp. 1–2, 2021. DOI: 10.3346/jkms.2021.36.e23

C.-C. Lai et al., “The impact of COVID-19 preventative measures on airborne/droplet-transmitted infectious diseases in Taiwan,” Journal of Infection, pp. 1–2, 2021. DOI: 10.1016/j.jinf.2020.11.029

R. Alguliyev, R. Aliguliyev, and F. Yusifov, “Graph modelling for tracking the COVID-19 pandemic spread,” Infectious Disease Modelling, vol. 6, pp. 112–122, 2021. DOI: 10.1016/j.idm.2020.12.002

N. Inayah, M. Manaqib, N. Fitriyati, and I. Yupinto, “Model Matematika Dari Penyebaran Penyakit Pulmonary Tuberculosis Dengan Penggunaan Masker Medis,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 14, no. 3, pp. 461–472, 2020. DOI: 10.30598/barekengvol14iss3pp461-472

I. Miroslava and D. Lilko, “Data Analytics and SIR Modeling of Covid-19 in Bulgaria,”, International Journal of Applied Mathematics, vol. 33, no. 6, pp. 1099–1114, 2020. DOI: 10.12732/ijam.v33i6.10

Z. Liao, P. Lan, Z. Liao, Y. Zhang, and S. Liu, “TW-SIR: time-window based SIR for COVID-19 forecasts,” Scientific Reports, vol. 10, no. 1, pp. 1–15, 2020. DOI: 10.1038/s41598-020-80007-8

A. Mitra, “Covid-19 in India and Sir Model,” Journal of Mechanics of Continua and Mathematical Sciences, vol. 15, no. 7, 2020. DOI: 10.26782/jmcms.2020.07.00001

M. Ala’raj, M. Majdalawieh, and N. Nizamuddin, “Modeling and forecasting of COVID-19 using a hybrid dynamic model based on SEIRD with ARIMA corrections,” Infectious Disease Modelling, vol. 6, pp. 98–111, 2021. DOI: 10.1016/j.idm.2020.11.007

M. Chinazzi, J. T. Davis, M. Ajelli, C. Gioannini, M. Litvinova, S. Merler, A. Pastore y Piontti, K. Mu, L. Rossi, K. Sun, C. Viboud, X. Xiong, H. Yu, M. Elizabeth Halloran, I. M. Longini, and A. Vespignani, “The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak,” Science, vol. 368, no. 6489, pp. 395–400, 2020. DOI: 10.1126/science.aba9757

D. Kai et al., “Universal Masking is Urgent in the COVID-19 Pandemic: SEIR and Agent Based Models, Empirical Validation, Policy Recommendations,” Preprint on arXiv, 2020. DOI: 10.48550/arXiv.2004.13553

A. J. Kucharski et al., “Early dynamics of transmission and control of COVID-19: a mathematical modelling study,” The Lancet Infectious Diseases, vol. 20, no. 5, pp. 553–558, 2020. DOI: 10.1016/S1473-3099(20)30144-4

C. Wang et al., “Evolving Epidemiology and Impact of Non-pharmaceutical Interventions on the Outbreak of Coronavirus Disease 2019 in Wuhan, China,” medRxiv, p. 2020.03.03.20030593, 2020. DOI: 10.1101/2020.03.03.20030593

J. T. Wu, K. Leung, and G. M. Leung, “Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study,” The Lancet, vol. 395, no. February, pp. 689–697, 2020. DOI: 10.1016/ S0140-6736(20)30260-9

Z. Yang et al., “Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions,” Journal of Thoracic Disease, vol. 12, no. 3, pp. 165–174, 2020. DOI: 10.21037/jtd.2020.02.64

S. Zhao et al., “Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak,” International Journal of Infectious Diseases, vol. 92, no. March, pp. 214–217, 2020. DOI: 10.1016/j.ijid.2020.01.050

I. Ahmed et al., “A mathematical model of Coronavirus Disease (COVID-19) containing asymptomatic and symptomatic classes,” Results in Physics, vol. 21, no. February, 2021. DOI: 10.1016/j.rinp.2020.103776

E. A. Iboi, C. N. Ngonghala, and A. B. Gumel, “Will an imperfect vaccine curtail the COVID-19 pandemic in the U.S.?” Infectious Disease Modelling, vol. 5, pp. 510–524, 2020. DOI: 10.1016/j.idm.2020.07.006

S. S. Musa et al., “Mathematical modeling of COVID-19 epidemic with effect of awareness programs,” Infectious Disease Modelling, vol. 6, pp. 448–460, 2021. DOI: 10.1016/j.idm.2021.01.012

R. R. Musafir, A. Suryanto, and I. Darti, “Dynamics of COVID-19 Epidemic Model with Asymptomatic Infection, Quarantine, Protection and Vaccination,” Communication in Biomathematical Sciences, vol. 4, no. 2, pp. 106–124, 2021. DOI: 10.5614/cbms.2021.4.2.3

D. Otoo, P. Opoku, S. Charles, and A. P. Kingsley, “Deterministic epidemic model for (SVCSyCAsyIR) pneumonia dynamics, with vaccination and temporal immunity,” Infectious Disease Modelling, vol. 5, pp. 42–60, 2020. DOI: 10.1016/j.idm.2019.11.001

V. Dale, E. J. Purcell, and S. Rigdon, “Calculus (Ninth Edition) - Varberg, Purcell, Rigdon,” 2007.

G. Olsder, Mathematical Systems Theory, 2nd ed. Delft University Press, 2003, vol. 11. ISBN 9040712727

A. A. Mat Daud, “A note on lienard-chipart criteria and its application to epidemic models,” Mathematics and Statistics, vol. 9, no. 1, pp. 41–45, 2021. DOI: 10.13189/ms.2021.090107

Badan Pusat Statistik, “Hasil Sensus Penduduk 2020,” Tech. Rep., 2021., https://www.bps.go.id/pressrelease/2021/01/21/1854/hasil-sensus-penduduk-2020.html., Accessed on 12 December 2021

D. Aldila et al., “A mathematical study on the spread of COVID-19 considering social distancing and rapid assessment: The case of Jakarta, Indonesia,” Chaos, Solitons and Fractals, vol. 139, p. 110042, 2020. DOI: 10.1016/j.chaos.2020.110042

M. Manaqib, I. Fauziah, and E. Hartati, “Model matematika penyebaran COVID-19 dengan penggunaan masker kesehatan dan karantina,” Jambura Journal of Biomathematics, vol. 2, no. 2, pp. 68–79, 2021. DOI: 10.34312/jjbm.v2i2.10483

UCONN Health, “COVID-19 Boosters and Third-Doses.” [Online]. Available: https://health.uconn.edu/coronavirus/covid-vaccine/covid-19-vaccine-third-dose-and-boosters, Accessed on 2 February 2023.

Centers for Disease Control and Prevention, “Understanding How Vaccines Work,” 2022. [Online]. Available: https://www.cdc.gov/vaccines/hcp/conversations/understanding-vacc-work.html, Accessed on 2 February 2023.

J. Kertes et al., “Effectiveness of mRNA BNT162b2 Vaccine 6 Months after Vaccination among Patients in Large Health Maintenance Organization, Israel,” Emerging infectious diseases, vol. 28, no. 2, pp. 338–346, 2022. DOI: 10.3201/eid2802.211834

A. Pani et al., “Results of the RENAISSANCE Study: REsponse to BNT162b2 COVID-19 vacciNe—short- And long-term Immune response evaluation in health Care workErs,” Mayo Clinic Proceedings, vol. 96, no. 12, pp. 2966–2979, 2021. DOI: 10.1016/j.mayocp.2021.08.013

M. E. Flacco et al., “Risk of SARS-CoV-2 Reinfection 18 Months After Primary Infection: Population-Level Observational Study,” Frontiers in Public Health, vol. 10, no. May, pp. 2020–2023, 2022. DOI: 10.3389/fpubh.2022.884121

R. Resmawan and L. Yahya, “Sensitivity Analysis of Mathematical Model of Coronavirus Disease (COVID-19) Transmission,” CAUCHY: Jurnal Matematika Murni dan Aplikasi, vol. 6, no. 2, pp. 91–99, 2020. DOI: 10.18860/ca.v6i2.9165




DOI: https://doi.org/10.34312/jjbm.v4i1.19162

Copyright (c) 2023 Muhammad Manaqib, Mahmudi Mahmudi, Galuh Prayoga

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Biomathematics (JJBM) has been indexed by:


                          EDITORIAL OFFICE OF JAMBURA JOURNAL OF BIOMATHEMATICS

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 Email: editorial.jjbm@ung.ac.id
 +6281356190818 (Call/SMS/WA)
 Jambura Journal of Biomathematics (JJBM) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.