Dynamical Analysis of Holling Tanner Prey Predators Model with Add Food in Second Level Predators

An Nisa Salsabila, Dian Savitri

Abstract


This article discusses the Holling Tanner prey predator model and Holling type II response function with additional food in the second level predator. The dynamic analysis of the system begins with determining the equilibrium point, analyzing the stability of the equilibrium point, and numerical simulation with python. The results of the dynamic analysis obtain seven equilibrium points, namely E1 extinction in three populations, point E2 extinction in the population of prey and first level predator, point E3 extinction in the first and second level predator populations, point E4 extinction in the second level predator population, point E5 extinction in the first level predator population, and point E6 the three populations are not extinction. The results of the stability analysis around the equilibrium point E1, E2, E3 are shown to be saddle unstable, then E4, E5, E6 are asymptotically stable with certain conditions. Numerical simulation is applied to determine the validity of the analytical results. The simulation results illustrate changes in the system solution in the form of phase portraits. The bifurcation diagram of the numerical continuation of the maximum predation rate parameter of the second-level predator (β) shows the existence of Hopf bifurcation when maximum predation rate parameter of the second-level predator with β = 2.1014232 and Transcritical bifurcation when maximum predation rate parameter of the second-level predator with β = 3.197.


Keywords


Holling Tanner; bifurcation; additional food; dynamic analysis

Full Text:

PDF

References


S. W. Utomo, I. Sutriyono, and R. Rizal, “Pengertian, ruang lingkup ekologi dan ekosistem,” Jakarta: Universitas Terbuka, 2012.

R. L. Smith et al., “Elements of ecology,” 1998.

D. Savitri, N. W. Hidajati, and H. S. Panigoro, “Implementasi algoritma genetika dalam mengestimasi kepadatan populasi jackrabbit dan coyote,” Jambura Journal of Biomathematics (JJBM), vol. 3, no. 1, pp. 23–28, 2022. DOI:10.34312/jjbm.v3i1.11935

A. L. Firdiansyah and N. Nurhidayati, “Dynamics in two competing predators-one prey system with two types of holling and fear effect,” Jambura Journal of Biomathematics (JJBM), vol. 2, no. 2, pp. 58–67, 2021. DOI:10.34312/jjbm.v2i2.11264

K. Das et al., “Bifurcation analysis of phytoplankton-fish model through parametric control by fish mortality rate and food transfer efficiency,” Jambura Journal of Biomathematics (JJBM), vol. 4, no. 2, pp. 146–154, 2023. DOI:10.37905/jjbm.v4i2.21480

D. Mukherjee, “Stability and bifurcation of a two competing prey-one predator system with anti-predator behavior,” Jambura Journal of Biomathematics (JJBM), vol. 3, no. 1, pp. 1–11, 2022. DOI:10.34312/jjbm.v3i1.13820

H. M. Ulfa, A. Suryanto, and I. Darti, “Dynamics of leslie-gower predator-prey model with additional food for predators,” International Journal of Pure and Applied Mathematics, vol. 115, no. 2, pp. 751–765, 2017. DOI:10.12732/ijpam.v115i2.1

H. S. Panigoro et al., “The influence of additive allee effect and periodic harvesting to the dynamics of leslie-gower predator-prey model,” Jambura Journal of Mathematics, vol. 2, no. 2, pp. 87–96, 2020. DOI:10.34312/jjom.v2i2.4566

J. T. Tanner, “The stability and the intrinsic growth rates of prey and predator populations,” Ecology, vol. 56, no. 4, pp. 855–867, 1975. DOI:10.2307/1936296

R. Gupta, “Dynamics of a Holling–Tanner model,” American Journal of Engineering Research (AJER), vol. 6, no. 4, pp. 132–140, 2017.

M. Banerjee and S. Banerjee, “Turing instabilities and spatio-temporal chaos in ratio-dependent Holling–Tanner model,” Mathematical biosciences, vol. 236, no. 1, pp. 64–76, 2012. DOI:10.1016/j.mbs.2011.12.005

D. Savitri, “Numerical study of one prey-two predator model considering food addition and anti-predator defense,” in E3S Web of Conferences, vol. 328, no. 1, p. 06003, 2021. DOI:10.1051/e3sconf/202132806003

N. A. Campbell, J. B. Reece, and L. G. Mitchell, BIOLOGI: Edisi Kelima Jilid 3. Jakarta: Erlangga, 2004.

G. Nikolsky, “The ecology of fishes.” London: Academic Press, 1963.

P. Srinivasu, B. Prasad, and M. Venkatesulu, “Biological control through provision of additional food to predators: a theoretical study,” Theoretical Population Biology, vol. 72, no. 1, pp. 111–120, 2007. DOI:10.1016/j.tpb.2007.03.011

W. Mahmudah and M. Rifai, “Analisis kestabilan model predator-prey dengan penambahan makanan alternatif dan fungsi respon Holling tipe III,” Jurnal Ilmiah Matematika dan Pendidikan Matematika, vol. 10, no. 2, pp. 133–146, 2020. DOI:10.36456/buanamatematika.v10i2.2728

A. Mufidah and D. Savitri, “Analisis kestabilan model mangsa pemangsa dengan makanan tambahan pada pemangsa menggunakan fungsi respon holling tipe iv,” Jurnal Riset dan Aplikasi Matematika (JRAM), vol. 7, no. 1, pp. 80–94, 2023. DOI:10.26740/jram.v7n1.p80-94

A. Mallawa, F. Amir, and M. Zainuddin, “Keragaan biologi populasi ikan cakalang (Katsuwonus pelamis) yang tertangkap dengan purse seine pada musim timur di perairan Laut Flores,” Jurnal IPTEKS Pemanfaatan Sumberdaya Perikanan, vol. 1, no. 2, pp. 129–145,

W. Susaniati, A. Mallawa, and F. Amir, “Kebiasaan makan ikan cakalang di Perairan laut Flores Sulawesi Selatan,” Agrokompleks, vol. 19, no. 1, pp. 51–57, 2019.

B. Sahoo, “Predator-prey system with seasonally varying additional food to predators,” International Journal of Basic and Applied Sciences, vol. 1, no. 4, pp. 363–373, 2012. DOI:10.14419/ijbas.v1i4.205

A. Basheer, E. Quansah, and R. D. Parshad, “The effect of additional food in Holling Tanner type models,” International Journal of Dynamics and Control, vol. 7, no. 4, pp. 1195–1212, 2019. DOI:10.1007/s40435-019-00580-3

W. E. Boyce, R. C. DiPrima, and D. B. Meade, Elementary differential equations. John Wiley & Sons, 2017.

D. Savitri and H. S. Panigoro, “Bifurkasi hopf pada model prey-predator-super predator dengan fungsi respon yang berbeda,” Jambura Journal of Biomathematics (JJBM), vol. 1, no. 2, pp. 65–70, 2020. DOI:10.34312/jjbm.v1i2.8399




DOI: https://doi.org/10.37905/jjbm.v5i2.25753

Copyright (c) 2024 An Nisa Salsabila, Dian Savitri

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Biomathematics (JJBM) has been indexed by:


                          EDITORIAL OFFICE OF JAMBURA JOURNAL OF BIOMATHEMATICS

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 Email: editorial.jjbm@ung.ac.id
 +6281356190818 (Call/SMS/WA)
 Jambura Journal of Biomathematics (JJBM) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.