A Discrete Predator-Prey Model with Cannibalism, Refuge, and Memory Effect: Implementation of Piecewise Constant Argument (PWCA) Method
Abstract
Keywords
Full Text:
PDFReferences
B. K. Das et al., “Modeling predator–prey interaction: effects of perceived fear and toxicity on ecological communities,” International Journal of Dynamics and Control, vol. 12, no. 7, pp. 2203–2235, 2024. DOI:10.1007/s40435-023-01343-x
S. Bruers et al., “Nature without suffering: Herbivorisation of predator species for the compassionate stewardship of earth’s ecosystems,” Journal of Applied Animal Ethics Research, vol. 6, no. 2, pp. 175–204, 2024. DOI:10.1163/25889567-bja10051
K. Iamba and D. Dono, “A review on brown planthopper (nilaparvata lugens stål), a major pest of rice in asia and pacific,” Asian Journal of Research in Crop Science, vol. 6, no. 4, pp. 7–19, 2021. DOI:10.9734/ajrcs/2021/v6i430122
E. Surmaini et al., “Climate change and the future distribution of brown planthopper in indonesia: A projection study,” Journal of the Saudi Society of Agricultural Sciences, vol. 23, no. 2, pp. 130–141, 2024. DOI:10.1016/j.jssas.2023.10.002
J. Liu et al., “Herbivore-induced rice volatiles attract and affect the predation ability of the wolf spiders, pirata subpiraticus and pardosa pseudoannulata,” Insects, vol. 13, no. 1, p. 90, 2022. DOI:10.3390/insects13010090
P. S. Rupawate et al., “Role of gut symbionts of insect pests: A novel target for insect-pest control,” Frontiers in Microbiology, vol. 14, p. 1146390, 2023. DOI:10.3389/fmicb.2023.1146390
L. K. Beay and M. Saija, “Dynamics of a stage–structure rosenzweig–macarthur model with linear harvesting in prey and cannibalism in predator,” Jambura Journal of Biomathematics (JJBM), vol. 2, no. 1, pp. 42–50, 2021. DOI:10.34312/jjbm.v2i1.10470
D. Bhattacharjee et al., “Stage structured prey-predator model incorporating mortal peril consequential to inefficiency and habitat complexity in juvenile hunting,” Heliyon, vol. 8, no. 11, 2022. DOI:10.1016/j.heliyon.2022.e11365
M. Rayungsari, R. R. Musafir, and D. Savitri, “Dynamics of a fractional-order predator-prey model incorporating allee effect and cannibalism,” in AIP Conference Proceedings, vol. 3302, no. 1. AIP Publishing, 2025. DOI:10.1063/5.0261992
R. K. Vijendravarma, “Diverse strategies that animals use to deter intraspecific predation,” Journal of Evolutionary Biology, vol. 36, no. 7, pp. 967–974, 2023. DOI:10.1111/jeb.14129
N. Hasan, A. Suryanto, and Trisilowati, “Dynamics of a fractional-order eco-epidemic model with allee effect and refuge on prey,”Commun. Math. Biol. Neurosci., vol. 2022, pp. Article–ID 117, 2022. DOI:10.28919/cmbn/7742
P. Santra, H. S. Panigoro, and G. Mahapatra, “Complexity of a discrete-time predator-prey model involving prey refuge proportional to predator,” Jambura Journal of Mathematics, vol. 4, no. 1, pp. 50–63, 2022. DOI:10.34312/jjom.v4i1.11918
Sajan, Anshu, and, B. Dubey, “Study of a cannibalistic prey–predator model with allee effect in prey under the presence of diffusion,” Chaos, Solitons & Fractals, vol. 182, p. 114797, 2024. DOI:10.1016/j.chaos.2024.114797
J. A. Rosenheim and S. J. Schreiber, “Pathways to the density-dependent expression of cannibalism, and consequences for regulated population dynamics,” Ecology, vol. 103, no. 10, p. e3785, 2022. DOI:10.1002/ecy.3785
M. Rayungsari et al., “Dynamical analysis of a predator-prey model incorporating predator cannibalism and refuge,” Axioms, vol. 11, no. 3, p. 116, 2022. DOI:10.3390/axioms11030116
M. Rayungsari et al., “Dynamics analysis of a predator–prey fractional-order model incorporating predator cannibalism and refuge,” Frontiers in Applied Mathematics and Statistics, vol. 9, p. 1122330, 2023. DOI:10.3389/fams.2023.1122330
M. Rayungsari et al., “A nonstandard numerical scheme for a predator-prey model involving predator cannibalism and refuge,” Communication in Biomathematical Sciences, vol. 6, pp. 11–23, 2023. DOI:10.5614/cbms.2023.6.1.2
H. S. Panigoro et al., “Dynamics of an eco-epidemic predator–prey model involving fractional derivatives with power-law and mittag–leffler kernel,” Symmetry, vol. 13, no. 5, p. 785, 2021. DOI:10.3390/sym13050785
M. D. Johansyah et al., “The existence and uniqueness of riccati fractional differential equation solution and its approximation applied to an economic growth model,” Mathematics, vol. 10, no. 17, p. 3029, 2022. DOI:10.3390/math10173029
H. S. Panigoro, M. Rayungsari, and A. Suryanto, “Bifurcation and chaos in a discrete-time fractional-order logistic model with allee effect and proportional harvesting,” International Journal of Dynamics and Control, vol. 11, no. 4, pp. 1544–1558, 2023. DOI:10.1007/s40435-022-01101-5
R. R. Musafir et al., “Comparison of fractional-order monkeypox model with singular and non-singular kernels,” Jambura Journal of Biomathematics (JJBM), vol. 5, no. 1, pp. 1–9, 2024. DOI:10.37905/jjbm.v5i1.24920
A. O. Yunus, M. O. Olayiwola, and A. M. Ajileye, “A fractional mathematical model for controlling and understanding transmission dynamics in computer virus management systems,” Jambura Journal of Biomathematics (JJBM), vol. 5, no. 2, pp. 116–131, 2024. DOI:10.37905/jjbm.v5i2.25956
D. Lin et al., “Experimental study of fractional-order rc circuit model using the caputo and caputo-fabrizio derivatives,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 3, pp. 1034–1044, 2021. DOI:10.1109/TCSI.2020.3040556
M. J. Uddin and C. N. Podder, “Fractional order prey–predator model incorporating immigration on prey: Complexity analysis and its control,” International Journal of Biomathematics, vol. 17, no. 05, p. 2350051, 2024. DOI:10.1142/S1793524523500511
P. Santra, “Fear effect in discrete prey-predator model incorporating square root functional response,” Jambura Journal of Biomathematics (JJBM), vol. 2, no. 2, pp. 51–57, 2021. DOI:10.34312/jjbm.v2i2.10444
D. Mukherjee, “Complex dynamics in a discrete-time model of two competing prey with a shared predator,” Jambura Journal of Biomathematics (JJBM), vol. 5, no. 2, pp. 71–82, 2024. DOI:10.37905/jjbm.v5i2.27453
A. M. A. El-Sayed and S. M. Salman, “On a discretization process of fractional-order riccati differential equation,” J. Fract. Calc. Appl, vol. 4, no. 2, pp. 251–259, 2013.
H. S. Panigoro et al., “A discrete-time fractional-order rosenzweig-macarthur predator-prey model involving prey refuge,” Commun. Math. Biol. Neurosci., vol. 2021, pp. Article–ID 77, 2021. DOI:10.28919/cmbn/6586
A. Suryanto, I. Darti, and E. Cahyono, “Bifurcation analysis and chaos control of a discrete-time fractional order predator-prey model with holling type ii functional response and harvesting,” CHAOS Theory and Applications, vol. 7, no. 1, pp. 87–98, 2025. DOI:10.51537/chaos.1581247
H. Deng et al., “Dynamic behaviors of lotka–volterra predator–prey model incorporating predator cannibalism,” Advances in Difference Equations, vol. 2019, pp. 1–17, 2019. DOI:10.1186/s13662-019-2289-8
S. Elaydi, An Introduction to Difference Equations, 3rd ed. San Antonio, Texas: Springer, 2005. DOI:10.1007/0-387-27602-5
A. Suryanto, “Stability analysis of the euler discretization for sir epidemic model,” in AIP Conference Proceedings, vol. 1602, no. 1. American Institute of Physics, 2014, pp. 375–379. DOI:10.1063/1.4882514
S. Ganti and S. Gopinathan, “A note on the solutions of cubic equations of state in low temperature region,” Journal of Molecular Liquids, vol. 315, p. 113808, 2020. DOI:10.1016/j.molliq.2020.113808
DOI: https://doi.org/10.37905/jjbm.v6i1.29391
Copyright (c) 2025 Maya Rayungsari, Dewi Nurmalitasari, Edy Tya Gullit Duta Pamungkas

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Jambura Journal of Biomathematics (JJBM) has been indexed by:
EDITORIAL OFFICE OF JAMBURA JOURNAL OF BIOMATHEMATICS |
![]() | Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia |
![]() | Email: editorial.jjbm@ung.ac.id |
![]() | +6281356190818 (WA Only) |
![]() | Jambura Journal of Biomathematics (JJBM) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. |