Model matematika SMEIUR pada penyebaran penyakit campak dengan faktor pengobatan

Anisa Fitra Dila Hubu, Novianita Achmad, Nurwan Nurwan

Abstract


This study discusses the spread of measles in a mathematical model. Mathematical modeling is not only limited to the world of mathematics but can also be applied in the health sector. Measles is a disease with a high transmission rate. The spread of measles in this model was modified by adding the treated population and the treatment parameters of the exposed population. In this article, we examine the equilibrium points in the SMEIUR mathematical model and perform stability analysis and numerical simulations. In this study, two equilibrium points were obtained, namely the disease-free and endemic equilibrium point. After getting the equilibrium point, an analysis is carried out to find the stability of the model. Furthermore, the simulation produces a stable disease-free equilibrium point at conditions R0<1 and a stable endemic equilibrium point at conditions R0>1. In this study, a numerical simulation was carried out to see population dynamics by varying the parameter values. The simulation results show that to reduce the spread of measles, it is necessary to increase the rate of advanced immunization, the rate of the infected population undergoing treatment, and the proportion of individuals who are treated cured.

Keywords


Measles; SMEIUR Mathematical Model; Equilibrium Point; Reproduction Numbers; Stability Analysis; Numerical Simulation

Full Text:

PDF [Indonesia]

References


U. Pagalay, Mathematical modeling: Aplikasi pada kedokteran, imunologi, biologi, ekonomi, dan perikanan. Malang: UIN-Maliki Press, 2009.

Kemenkes-RI, Peraturan Menteri Kesehatan Republik Indonesia nomor 12 tahun 2017 tentang penyelenggaraan imunisasi. Jakarta: Kementerian Kesehatan RI, 2017.

Kemenkes-RI,, Profil kesehatan Indonesia 2018 [Indonesia Health Profile 2018]. Jakarta: Kementerian Kesehatan RI, 2019.

M. O. Fred, J. K. Sigey, J. A. Okello, J. M. Okwoyo, dan G. J. Kang’ethe, “Mathematical modeling on the control of measles by vaccination: Case study of KISII County, Kenya,” The SIJ Transactions on Computer Science Engineering & its

Applications (CSEA), vol. 02, no. 04, hal. 38–46, 2014.

A. Momoh, M. Ibrahim, I. Uwanta, dan S. Manga, “Mathematical model for control of measles epidemiology,” International Journal of Pure and Apllied Mathematics, vol. 87, no. 5, 2013.

S. Edward, “A mathematical model for control and elimination of the transmission dynamics of measles,” Applied and Computational Mathematics, vol. 4, no. 6, hal. 396, 2015.

S. M. Garba, M. A. Safi, dan S. Usaini, “Mathematical model for assessing the impact of vaccination and treatment on measles transmission dynamics,” Mathematical Methods in the Applied Sciences, vol. 40, no. 18, hal. 6371–6388, 2017.

S. Nigusie Mitku, “Mathematical modeling and simulation study for the control and transmission dynamics of measles,” American Journal of Applied Mathematics, vol. 5, no. 4, hal. 99, 2017.

E. D. Zanuarini, Jaharuddin, dan E. H. Nugrahani, “Sistem dinamik penyebaran penyakit campak dengan dua tahapan individu terinfeksi,” Tesis, Institut Pertanian Bogor, 2018.

S. O. Haryanugroho, “Perilaku Orang Tua Terhadap Penanganan Penyakit Campak pada Anak-Anak,” hal. 1—-5, 2019.

M. Z. Ndii, Pemodelan matematika. Yogyakarta: Penerbit Deepublish, 2018.

L. Candrawati, “Model matematika SACR penyebaran virus hepatitis C pada pengguna narkoba suntik,” Skripsi,

Universitas Negeri Yogyakarta, 2014.

P. N. V. Tu, Dynamical systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994.

H.W. Hethcote, “The mathematics of infectious diseases,” SIAM Review, vol. 42, no. 4, hal. 599–653, 2000.

P. van den Driessche dan J. Watmough, “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,” Mathematical Biosciences, vol. 180, no. 1-2, hal. 29–48, 2002.




DOI: https://doi.org/10.34312/jjbm.v1i2.7970

Copyright (c) 2020 Anisa Fitra Dila Hubu, Novianita Achmad, Nurwan Nurwan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Biomathematics (JJBM) has been indexed by:

      


                          EDITORIAL OFFICE OF JAMBURA JOURNAL OF BIOMATHEMATICS

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango 96119, Gorontalo, Indonesia
 Email: editorial.jjbm@ung.ac.id
 +6281356190818 (Call/SMS/WA)
 Jambura Journal of Biomathematics (JJBM) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.