Bifurkasi Hopf pada model prey-predator-super predator dengan fungsi respon yang berbeda

Dian Savitri, Hasan S. Panigoro


This article discusses the one-prey, one-predator, and the super predator model with different types of functional response. The rate of prey consumption by the predator follows Holling type I functional response and the rate of predator consumption by the super predator follows Holling type II functional response. We identify the existence and stability of critical points and obtain that the extinction of all population points is always unstable, and the other two are conditionally stable i.e., the super predator extinction point and the co-existence point. Furthermore, we give the numerical simulations to describe the bifurcation diagram and phase portraits of the model. The bifurcation diagram is obtained by varying the parameter of the conversion rate of predator biomass into a new super-predator which gives forward and Hopf bifurcation. The forward bifurcation occurs around the super predator extinction point while Hopf bifurcation occurs around the interior of the model. Based on the terms of existence and numerical simulation, we confirm that the conversion rate of predator biomass into a new super-predator controls the dynamics of the system and maintains the existence of predator.


Hopf Bifurcation; Forward Bifurcation; Holling type I and II; Numerical Continuation

Full Text:

PDF [Indonesia]


M. L. Rosenzweig dan R. H. MacArthur, “Graphical representation and stability conditions of predator-prey interactions,” The American Naturalist, vol. 97, no. 895, hal. 209–223, 1963.

M. Moustafa, M. H. Mohd, A. I. Ismail, dan F. A. Abdullah, “Stage structure and refuge effects in the dynamical analysis of a fractional order Rosenzweig-MacArthur prey-predator model,” Progress in Fractional Differentiation and Applications, vol. 5, no. 1, hal. 49–64, 2019.

L. K. Beay dan M. Saija, “A stage-structure Rosenzweig-MacArthur model with effect of prey refuge,” Jambura Journal of Biomathematics (JJBM), vol. 1, no. 1, hal. 1–7, 2020.

R. Mokodompit, N. Nurwan, dan E. Rahmi, “Bifurkasi periode ganda dan Neimark-Sacker pada model diskret Leslie-Gower dengan fungsi respon ratio-dependent,” Limits: Journal of Mathematics and Its Applications, vol. 17, no. 1, hal. 19, 2020.

Y. Lin, X. Xie, F. Chen, dan T. Li, “Convergences of a stage-structured predator-prey model with modified Leslie-Gower and Holling-type II schemes,” Advances in Difference Equations, vol. 2016, no. 1, 2016.

Y. Cai, C. Zhao, W. Wang, dan J. Wang, “Dynamics of a Leslie–Gower predator–prey model with additive Allee effect,” Applied Mathematical Modelling, vol. 39, no. 7, hal. 2092–2106, 2015.

H. Ulfa, A. Suryanto, dan I. Darti, “Dynamics of Leslie-Gower predator-prey model with additional food for predators,” International Journal of Pure and Applied Mathematics, vol. 115, no. 2, hal. 751–765, 2017.

H. S. Panigoro dan E. Rahmi, “Modifikasi sistem predator-prey: dinamika model Leslie-Gower dengan daya dukung yang tumbuh logistik,” SEMIRATA MIPAnet, hal. 94–103, 2017.

A. Suryanto dan I. Darti, “Dynamics of Leslie-Gower pest-predator model with disease in pest including pest-harvesting and optimal implementation of pesticide,” International Journal of Mathematics and Mathematical Sciences, vol. 2019, Article ID 5079171, hal. 1–9, 2019.

U. Salamah, A. Suryanto, dan W. M. Kusumawinahyu, “Leslie-Gower predator-prey model with stage-structure, Beddington-DeAngelis functional response, and anti-predator behavior,” AIP Conference Proceedings, vol. 2084, no. 1, hal. 20001, 2019.

H. S. Panigoro, E. Rahmi, N. Achmad, dan S. L. Mahmud, “The Influence of additive Allee effect and periodic harvesting to the dynamics of Leslie-Gower predator-prey model,” Jambura Journal of Mathematics, vol. 2, no. 2, hal. 87–96, 2020.

H. S. Panigoro, “Analisis dinamik sistem predator-prey model Leslie-Gower dengan pemanenan secara konstan terhadap predator,” Euler, vol. 2, no. 1, hal. 1–12, 2014.

S. Mondal, N. Bairagi, dan G. M. ’Guerekata, “Global stability of a Leslie-Gower-type fractional order tritrophic food chain model,” Fractional Differential Calculus, vol. 9, no. 1, hal. 149–161, 2019.

S. Pal, N. Pal, S. Samanta, dan J. Chattopadhyay, “Fear effect in prey and hunting cooperation among predators in a Leslie-Gower model,” Mathematical Biosciences and Engineering, vol. 16, no. 5, hal. 5146–5179, 2019.

S. Sarwardi, P. K. Mandal, dan S. Ray, “Dynamical behaviour of a two-predator model with prey refuge,” Journal of Biological Physics, vol. 39, no. 4, hal. 701–722, 2013.

D. Savitri, A. Suryanto, W. M. Kusumawinahyu, dan Abadi, “A dynamics behaviour of two Predators and one prey interaction with competition between predators,” IOP Conference Series: Materials Science and Engineering, vol. 546, no. 5, hal. 052069, 2019.

K. Shiva Reddy, K. Laksmi Narayan, dan N. Pattabhi Ramacharyulu, “A three species ecosystem consisting of a prey, predator and super predator,” Mathematics Applied in Science and Technology, vol. 2, no. 1, hal. 95–107, 2010.

D. Savitri dan Abadi, “Stability analysis and numerical simulation of 1 prey – 2 predator system,” AIP Conference Proceedings, vol. 1651, no. 1, hal. 114–117, 2015.


Copyright (c) 2020 Dian Savitri, Hasan S. Panigoro

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Jambura Journal of Biomathematics (JJBM) has been indexed by:


 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 +6281356190818 (Call/SMS/WA)
 Jambura Journal of Biomathematics (JJBM) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.