Bifurcation analysis of phytoplankton-fish model through parametric control by fish mortality rate and food transfer efficiency
Abstract
An Algae-zooplankton fish model is studied in this article. First the proposed model is evaluated for positive invariance and boundedness. Then,the Routh-Hurwitz parameters and the Lyapunov function are used to determine the presence of a positive interior steady state and the criteria for plankton model stability (both local and global). Taylor’s sequence is also used to discuss Hopf bifurcation and the stability of bifurcated periodic solutions. The model’s bifurcation analysis reveals that Hopf-bifurcation can occur when mortality rate and food transfer efficiency are used as bifurcation parameters. Finally, we use numerical simulation to validate the analytical results.
Keywords
Full Text:
PDFReferences
G. Caughley and J. H. Lawton, Plant-herbivore systems in May, RM: Theoretical Ecology. Blcakwell Scientific publications, 1981.
M. L. Rosenzweig, “Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time,” Science, vol. 171, no. 3969, pp. 385–387, 1971. DOI:10.1126/science.171.3969.385
J. Hrbácˇek, M. Dvorˇakova, V. Korˇínek, and L. Procházkóva, “Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association,” SIL Proceedings, 1922-2010, vol. 14, no. 1, pp. 192–195,
DOI:10.1080/03680770.1959.11899269
J. L. Brooks and S. I. Dodson, “Predation, body size, and composition of plankton,” Science, vol. 150, no. 3692, pp. 28–35, 1965. DOI:10.1126/science.150.3692.28
J. Shapiro and D. I. Wright, “Lake restoration by biomanipulation: Round lake, minnesota, the first two years,” Freshwater Biology, vol. 14, no. 4, pp. 371–383, 1984. DOI:10.1111/j.1365-2427.1984.tb00161.x
K. D. Hambright, “Can zooplanktivorous fish really affect lake thermal dynamics?” Archiv fr Hydrobiologie, vol. 130, no. 4, pp. 429–438, 1994. DOI: 10.1127/archiv-hydrobiol/130/1994/429
J. Sedal and A. Duncan, “Low fish predation pressure in London reservoirs: II. Consequences to zooplankton community structure,” Hydrobiologia, vol. 291, no. 3, pp. 179–191, 1994. DOI:10.1007/BF00014707
S. Dodson, “The ecological role of chemical stimuli for the zooplankton: Predator-avoidance behavior in Daphnia,” Limnology and Oceanography, vol. 33, no. 6part2, pp. 1431–1439, 1988. DOI:10.4319/lo.1988.33.6part2.1431
L. D. Meester, L. J. Weider, and R. Tollrian, “Alternative antipredator defences and genetic polymorphism in a pelagic predatorprey system,” Nature, vol. 378, no. 6556, pp. 483–485, 1995. DOI:10.1038/378483a0
G. Stirling, “Daphnia Behaviour as a Bioassay of Fish Presence or Predation,” Functional Ecology, vol. 9, no. 5, pp. 778–784, 1995. DOI:10.2307/2390252
Z. M. Gliwicz, “Why do cladocerans fail to control algal blooms?,” Hydrobiologia, vol. 200, no. 1, pp. 83–97, 1990. DOI:10.1007/BF02530331
Z. M. Gliwicz and W. Lampert, “Food Thresholds in Daphnia Species in the Absence and Presence of Blue-Green Filaments,” Ecology, vol. 71, no. 2, pp. 691–702, 1990. DOI:10.2307/1940323
J. Chattopadhyay, R. R. Sarkar, and A. el Abdllaoui, “A delay differential equation model on harmful algal blooms in the presence of toxic substances,” Mathematical Medicine and Biology, vol. 19, no. 2, pp. 137–161, 2002. DOI:10.1093/imammb/19.2.137
R. Sarkar and J. Chattopadhayay, “Occurrence of planktonic blooms under environmental fluctuations and its possible control mechanismmathematical models and experimental observations,” Journal of Theoretical Biology, vol. 224, no. 4, pp. 501–516, 2003. DOI:10.1016/S0022-5193(03)00200-5
S. Chakraborty, S. Roy, and J. Chattopadhyay, “Nutrient-limited toxin production and the dynamics of two phytoplankton in culture media: A mathematical model,” Ecological Modelling, vol. 213, no. 2, pp. 191–201, 2008. DOI:10.1016/j.ecolmodel.2007.12.008
K. Das and S. Ray, “Effect of delay on nutrient cycling in phytoplanktonzooplankton interactions in estuarine system,” Ecological Modelling, vol. 215, no. 1-3, pp. 69–76, 2008. DOI:10.1016/j.ecolmodel.2008.02.019
S.-J. Jang, J. Baglama, and J. Rick, “Nutrient-phytoplankton-zooplankton models with a toxin,” Mathematical and Computer Modelling, vol. 43, no. 1-2, pp. 105–118, 2006. DOI:10.1016/j.mcm.2005.09.030
J. Chattopadhayay, R. Sarkar, and S. Mandal, “Toxin-producing plankton may act as a biological control for planktonic bloomsfield study and mathematical modelling,” Journal of Theoretical Biology, vol. 215, no. 3, pp. 333–344, 2002. DOI:10.1006/jtbi.2001.2510
T. Saha and M. Bandyopadhyay, “Dynamical analysis of toxin producing phytoplanktonzooplankton interactions,” Nonlinear Analysis: Real World Applications, vol. 10, no. 1, pp. 314–332, 2009. DOI:10.1016/j.nonrwa.2007.09.001
Y. Wang, W. Jiang, and H. Wang, “Stability and global Hopf bifurcation in toxic phytoplanktonzooplankton model with delay and selective harvesting,” Nonlinear Dynamics, vol. 73, no. 1-2, pp. 881–896, 2013. DOI:10.1007/s11071-013-0839-2
R. K. Upadhyay, P. Roy, and J. Datta, “Complex dynamics of ecological systems under nonlinear harvesting: Hopf bifurcation and Turing instability,” Nonlinear Dynamics, vol. 79, no. 4, pp. 2251–2270, 2015. DOI:10.1007/s11071-014-1808-0
F. Bian, W. Zhao, Y. Song, and R. Yue, “Dynamical Analysis of a Class of Prey-Predator Model with Beddington-DeAngelis Functional Response, Stochastic Perturbation, and Impulsive Toxicant Input,” Complexity, vol. 2017, pp. 1–18, 2017. DOI:10.1155/2017/3742197
L. Liu and X. Meng, “Optimal harvesting control and dynamics of two-species stochastic model with delays,” Advances in Difference Equations, vol. 2017, no. 1, pp. 1–18, 2017. DOI:10.1186/s13662-017-1077-6
Y. Pei, Y. Lv, and C. Li, “Evolutionary consequences of harvesting for a two-zooplankton one-phytoplankton system,” Applied Mathematical Modelling, vol. 36, no. 4, pp. 1752–1765, 2012. DOI:10.1016/j.apm.2011.09.015
T. Zhang, W. Ma, and X. Meng, “Global dynamics of a delayed chemostat model with harvest by impulsive flocculant input,” Advances in Difference Equations, vol. 2017, no. 1, pp. 1–17, 2017. DOI:10.1186/s13662-017-1163-9
J. Wang, H. Cheng, H. Liu, and Y. Wang, “Periodic solution and control optimization of a prey-predator model with two types of harvesting,” Advances in Difference Equations, vol. 2018, no. 1, pp. 1–14, 2018. DOI:10.1186/s13662-018-1499-9
W. Lampert, W. Fleckner, H. Rai, and B. E. Taylor, “Phytoplankton control by grazing zooplankton: A study on the spring clear-water phase1,” Limnology and Oceanography, vol. 31, no. 3, pp. 478–490, 1986. DOI:10.4319/lo.1986.31.3.0478
C. Luecke, M. J. Vanni, J. J. Magnuson, J. F. Kitchell, and P. T. Jacobson, “Seasonal regulation of daphnia populations by planktivorous fish: Implications for the spring clear-water phase,” Limnology and Oceanography, vol. 35, no. 8, pp. 1718–1733, 1990. DOI:10.4319/lo.1990.35.8.1718
O. Sarnelle, “Herbivore Effects on Phytoplankton Succession in a Eutrophic Lake,” Ecological Monographs, vol. 63, no. 2, pp. 129–149, 1993. DOI:10.2307/2937177
D. Schindler, “The dependence of primary production upon physical and chemical factors in a small, senescing lake, including the effects of complete winter oxygen depletion,” Arch. Hydrobiol., vol. 69, pp. 413–451, 1972.
E. van Donk, M. P. Grimm, R. D. Gulati, and J. P. G. Klein Breteler, “Whole-lake food-web manipulation as a means to study community interactions in a small ecosystem,” Hydrobiologia, vol. 200, no. 1, pp. 275–289, 1990. DOI:10.1007/BF02530346
M. Scheffer, S. Rinaldi, and Y. A. Kuznetsov, “Effects of fish on plankton dynamics: a theoretical analysis,” Canadian Journal of Fisheries and Aquatic Sciences, vol. 57, no. 6, pp. 1208–1219, 2000. DOI:10.1139/f00-018
D. Savitri, N. W. Hidajati, and H. S. Panigoro, “Implementasi algoritma genetika dalam mengestimasi kepadatan populasi jackrabbit dan coyote,” Jambura Journal of Biomathematics (JJBM), vol. 3, no. 1, pp.23–28, 2022. DOI:10.34312/jjbm.v3i1.11935
A. L. Firdiansyah and N. Nurhidayati, “Dynamics in two competing predators-one prey system with two types of Holling and fear effect,” Jambura Journal of Biomathematics (JJBM), vol. 2, no. 2, pp. 58–67, 2021. DOI:10.34312/jjbm.v2i2.11264
R. Ibrahim, L. Yahya, E. Rahmi, and R. Resmawan, “Analisis dinamik model predator-prey tipe Gause dengan wabah penyakit pada prey,” Jambura Journal of Biomathematics (JJBM), vol. 2, no. 1, pp. 20–28, 2021. DOI:10.34312/jjbm.v2i1.10363
X. Feng, Y. Song, and X. An, “Dynamic behavior analysis of a prey-predator model with ratio-dependent monod-haldane functional response,” Open Mathematics, vol. 16, no. 1, pp. 623–635, 2018. DOI:10.1515/math-2018-0060
H. Liu and H. Cheng, “Dynamic analysis of a preypredator model with state-dependent control strategy and square root response function,” Advances in Difference Equations, vol. 2018, no. 1, pp. 1–13, 2018. DOI:10.1186/s13662-018-1507-0
X. Feng, Y. Song, J. Liu, and G. Wang, “Permanence, stability, and coexistence of a diffusive predatorprey model with modified LeslieGower and BD functional response,” Advances in Difference Equations, vol. 2018, no. 1, pp. 1–17, 2018. DOI:10.1186/s13662-018-1735-3
T. Zhou, X. Zhang, M. Xiang, and Z. Wu, “Permanence and almost periodic solution of a predatorprey discrete system with holling iv functional response,” International Journal of Biomathematics, vol. 9, no. 3, p. 1650035, 2016. DOI:10.1142/S1793524516500352
J. Huang, X. Xia, X. Zhang, and S. Ruan, “Bifurcation of codimension 3 in a predatorprey system of leslie type with simplified holling type iv functional response,” International Journal of Bifurcation and Chaos, vol. 26, no. 02, p. 1650034, 2016. DOI:10.1142/S0218127416500346
A. Sharma, A. K. Sharma, and K. Agnihotri, “Analysis of a toxin producing phytoplanktonzooplankton interaction with Holling IV type scheme and time delay,” Nonlinear Dynamics, vol. 81, no. 1-2, pp. 13–25, 2015. DOI:10.1007/s11071-015-1969-5
DOI: https://doi.org/10.37905/jjbm.v4i2.21480
Copyright (c) 2023 Kalyan Das, V. Madhusudanan, M. N. Srinivas, Md Humayun Kabir, Md Osman Gani, Sardar M. N. Islam
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Jambura Journal of Biomathematics (JJBM) has been indexed by:
EDITORIAL OFFICE OF JAMBURA JOURNAL OF BIOMATHEMATICS |
Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia |
Email: editorial.jjbm@ung.ac.id |
+6281356190818 (Call/SMS/WA) |
Jambura Journal of Biomathematics (JJBM) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Powered by Public Knowledge Project OJS. |