Sensitivity Analysis of SI1I2RS Model for Dengue Fever Transmission

Trianty Putri Blante, Jaharuddin Jaharuddin, Endar Hasafah Nugrahani

Abstract


Dengue fever is a disease caused by dengue virus transmitted through Aedes aegypti mosquitoes. This study discusses the SI1I2RS epidemic model in the spread of dengue fever, assuming that people with this disease can experience severe and mild symptoms. The analysis in this research aims to determine the stability of the equilibrium point, primary reproduction number, parameter sensitivity, and numerical simulation to determine the effect of parameters on the dynamics of the spread of dengue fever. The results of this analysis show two equilibrium points, namely the disease-free equilibrium point, which is locally asymptotically stable when R0 < 1 and the endemic point, which is locally asymptotically stable when R0 > 1. Numerical simulations show that the change in the parameter of the average bite of individual mosquitoes in humans has a significant effect on the primary reproductive number where when the moderate acidity of individual mosquitoes in humans is 0.05 and the contact rate of disease transmission from infected mosquitoes to susceptible humans is 0.025, it can suppress the spread of dengue fever. Therefore, individuals must maintain cleanliness and take precautions against the spread of dengue fever.

Keywords


Dengue Fever; Endemic; SI1I2RS Model

Full Text:

PDF

References


A. Saputra, "Community Behavior Patterns That Influence The Causes of Dengue Hemorrhagic Fever (DHF) in The Pondok Petir Elementary Region," Muhammadiyah Int. Public Heal. Med. Proceeding, vol. 1, no. 1, pp. 811–820, 2021. DOI:10.53947/miphmp.v1i1.137

M. A. Kleden, A. Atti, and A. H. Talahatu, "Factors causing Dengue Hemorrhagic Fever (DHF) in Sikka District, East Nusa Tenggara Province," Jambura Journal of Biomathematics (JJBM), vol. 4, no. 1, pp. 80–87, 2023. DOI:10.34312/jjbm.v4i1.19460

Z. E. Fitri et al., “A Combination of Forward Chaining and Certainty Factor Methods for Early Detection of fever: Dengue Hemorrhagic Fever, Malaria and Typhoid,” Sci. J. Informatics, vol. 9, no. 1, pp. 23–31, 2022. DOI:10.15294/sji.v9i1.33007

M. Nabilah et al., “Forecasting the number of dengue fever based on weather conditions using ensemble forecasting method,” IAES Int. J. Artif. Intell., vol. 12, no. 1, pp. 496–504, 2023. DOI:10.11591/ijai.v12.i1.pp496-504

S. Noisakran and C. P. Guey, “Alternate hypothesis on the pathogenesis of dengue hemorrhagic fever (DHF)/dengue shock syndrome (DSS) in dengue virus infection,” Exp. Biol. Med., vol. 233, no. 4, pp. 401–408, 2008. DOI:10.3181/0707-MR-198

R. Tumilaar, P. Sianturi, and Jaharuddin, “Mathematical Model of Dengue Disease Transmission Considering the incubation Period Both Intrinsic and Extrinsic,” IOSR J. Math., vol. 10, no. 5, pp. 13–18, 2014. DOI:10.9790/5728-10511318

S. B. Halstead, “Dengue,” Lancet, vol. 370, no. 9599, pp. 1644–1652, 2007. DOI:10.1016/S0140-6736(07)61687-0

D. J. Gubler, “Dengue and dengue hemorrhagic fever.” Clinical microbiology reviews., vol. 11, no. 3, pp. 480–96, 1998. DOI:10.1128/CMR.11.3.480

A. Triska, M. H. Dzulfikar, and A. K. Supriatna, "The dynamics of prisoner population model in Indonesia with a rehabilitation regulation for drug users to overcome prison overcapacity issue," Jambura Journal of Biomathematics (JJBM), vol. 4, no. 1, pp. 55–62, 2023. DOI:10.34312/jjbm.v4i1.18898

A. T. R. Sidik et al., "The existence of Neimark-Sacker bifurcation on a discrete-time SIS-Epidemic model incorporating logistic growth and allee effect," Jambura Journal of Biomathematics (JJBM), vol. 3, no. 2, pp. 58–62, 2022. DOI:10.34312/jjbm.v3i2.17515

S. Dundar, B. Gokkurt, and Y. Soylu, “Mathematical Modelling at a Glance: A Theoretical Study,” Procedia - Soc. Behav. Sci., vol. 46, pp. 3465–3470, 2012. DOI:10.1016/j.sbspro.2012.06.086

S. Side and S. M. Noorani, “A SIR model for spread of dengue fever disease (simulation for South Sulawesi, Indonesia and Selangor, Malaysia),” World J. Model. Simul, vol. 9, no. 2, pp. 96–105, 2013. DOI: 10.13140/RG.2.1.5042.6721

S. Sanusi et al., “Analysis and Simulation of SIRS Model for Dengue Fever Transmission in South Sulawesi, Indonesia,” Journal of Applied Mathematics, vol. 2021. no. 1, pp. 2918080, 2021. DOI:10.1155/2021/2918080

S. R. NRE and M. U. Riandi, "Infeksi Virus Dengue Tanpa Gejala pada Keluarga Penderita DBD di Provinsi Jawa Barat," Indonesian Journal of Biotechnology Medicine, vol. 1, no. 2, pp. 79–84, 2012. DOI: 10.22435/jbmi.v1i2.4182.79-84

P. Pongsumpun, “Transmission Model for Dengue Disease with and Without The Effect of Extrinsic,” KMITL Sci. Tech. J., vol. 6, no. 2, pp. 74–82, 2006.

R. Jan, M. A. Khan, and J. F. Gómez-Aguilar, “Asymptomatic carriers in transmission dynamics of dengue with control interventions,” Optim. Control Appl. Methods, vol. 41, no. 2, pp. 430–447, 2020. DOI:10.1002/oca.2551

A. N. Aini and A. Shodiqin, “Analisis Kestabilan Dan Simulasi Model Penyakit Demam Berdarah Dengue (DBD),” AKSIOMA: Jurnal Matematika dan Pendidikan Matematika, vol. 5, no. 2, pp. 1–19, 2014. DOI:10.26877/aks.v5i2/septembe.756




DOI: https://doi.org/10.37905/jjbm.v5i1.23132

Copyright (c) 2024 Trianty Putri Blante, Jaharuddin, Endar H. Nugrahani

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Biomathematics (JJBM) has been indexed by:


                          EDITORIAL OFFICE OF JAMBURA JOURNAL OF BIOMATHEMATICS

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 Email: editorial.jjbm@ung.ac.id
 +6281356190818 (Call/SMS/WA)
 Jambura Journal of Biomathematics (JJBM) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.