Comparison of Fractional-Order Monkeypox Model with Singular and Non-Singular Kernels

Raqqasyi Rahmatullah Musafir, Agus Suryanto, Isnani Darti, Trisilowati Trisilowati

Abstract


The singularity of the kernel of the Caputo fractional derivative has become an issue, leading many researchers to consider the Atangana-Baleanu-Caputo (ABC) fractional derivative in epidemic models where the kernel is non-singular. In this context, the objective of this study is to compare the calibration and forecasting performance of fractional-order monkeypox models with singular and nonsingular kernels, represented by the model with respect to the Caputo operator and the ABC operator, respectively. We have proposed a monkeypox epidemic model with respect to the ABC operator (MPXABC), where the model with respect to the Caputo derivative (MPXC) has been proposed in previous research. We have analyzed the existence and uniqueness of the solution. Three equilibrium points of the model are endemic, human endemic, and monkeypox-free, and their global stability has been investigated. The global dynamics of the MPXABC are the same as those of the MPXC. In evaluating the performance, we collected secondary data on weekly monkeypox cases from June 1 to November 23, 2022, in the USA. Parameter estimation has been performed using the least squares method, while the solutions of the model have been determined numerically using a predictor-corrector scheme. The benchmark for performance has been determined based on the root mean square error. Data calibration and forecasting indicate that the MPXC generally has the best performance for each value of the derivative order. For certain values of derivative order, the MPXABC performs better than the corresponding firstorder model. However, generally, the corresponding first-order model performs better than the MPXABC. Depending on the data trends and the specified orders, the MPXC outperforms the MPXABC. Thus, the singularity issue of the Caputo derivative does not always have a negative impact on model fitting to data.

Keywords


Monkeypox model; Fractional-order model; Caputo derivative; Atangana-Baleanu-Caputo derivative; Parameter estimation

Full Text:

PDF

References


A. Y. Cheema et al., “Monkeypox: a review of clinical features, diagnosis, and treatment,” Cureus, vol. 4, no. 7, 2022. DOI:10.7759/cureus.26756

Z. Li and S. Er, “Scientists’ interest in monkeypox may help countries worldwide,” Journal of Biosafety and Biosecurity, vol. 4, no. 1, p. 86, 2022. DOI:10.1016/j.jobb.2022.06.005

E. Mathieu et al., “Monkeypox,” 2022, https://ourworldindata.org/monkeypox [accessed: March 7, 2024].

F.-M. Lum et al., “Monkeypox: disease epidemiology, host immunity and clinical interventions,” Nature Reviews Immunology, vol. 22, no. 10, pp. 597–613, 2022. DOI:10.1038/s41577-022-00775-4

R. R. Musafir, A. Suryanto, and I. Darti, “Dynamics of covid-19 epidemic model with asymptomatic infection, quarantine, protection and vaccination,” Communication in Biomathematical Sciences, vol. 4, no. 2, pp. 106–124, 2021. DOI:10.5614/cbms.2021.4.2.3

I. Darti et al., “A seiqrd epidemic model to study the dynamics of covid-19 disease,” Commun.Math. Biol. Neurosci., vol. 2023, pp. 1–19, 2023. DOI:10.28919/cmbn/7822

I. Darti et al., “Forecasting covid-19 epidemic in spain and italy using a generalized richards model with quantified uncertainty,” Commun. Biomath. Sci, vol. 3, pp. 90–100, 2020. DOI:10.5614/cbms.2020.3.2.1

Trisilowati et al., “Dynamics of a fractional-order covid-19 epidemic model with quarantine and standard incidence rate,” Axioms, vol. 12, no. 6, p. 591, 2023. DOI:10.3390/axioms12060591

G. Chowell, A. Tariq, and J. M. Hyman, “A novel sub-epidemic modeling framework for short-term forecasting epidemic waves,” BMC medicine, vol. 17, pp. 1–18, 2019. DOI:10.1186/s12916-019-1406-6

S. Qureshi and A. Yusuf, “Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu,” Chaos, Solitons & Fractals, vol. 122, pp. 111–118, 2019. DOI:10.1016/j.chaos.2019.03.020

R. R. Musafir and S. Anam, “Parameter estimation of covid-19 compartment model in indonesia using particle swarm optimization,” Jurnal Berkala Epidemiologi, vol. 10, no. 3, 2022. DOI:10.20473/jbe.V10I32022.283-292

M. Rayungsari, M. Aufin, and N. Imamah, “Parameters estimation of generalized richards model for covid-19 cases in indonesia using genetic algorithm,” Jambura Journal of Biomathematics (JJBM), vol. 1, no. 1, pp. 25–30, 2020. DOI:10.34312/jjbm.v1i1.6910

D. Savitri, N. W. Hidajati, and H. S. Panigoro, “Implementasi algoritma genetika dalam mengestimasi kepadatan populasi jackrabbit dan coyote,” Jambura Journal of Biomathematics (JJBM), vol. 3, no. 1, pp. 23–28, 2022. DOI:10.34312/jjbm.v3i1.11935

C. Bhunu and S. Mushayabasa, “Modelling the transmission dynamics of pox-like infections,” International Journal of Applied Mathematics (IAENG), vol. 41, pp. 141–149, 2011.

S. A. Somma, N. I. Akinwande, and U. D. Chado, “A mathematical model of monkey pox virus transmission dynamics,” Ife Journal of Science, vol. 21, no. 1, pp. 195–204, 2019. DOI:10.4314/ijs.v21i1.17

S. Eshun, R. Essieku, and J. Ladzekpo, “Stability analyses on the effect of vaccination and contact tracing in monkeypox virus transmission,” J. Math. Comput. Sci., vol. 13, pp. Article–ID, 2023. DOI:10.28919/jmcs/8038

Samreen et al., “Mathematical modeling of monkeypox infection with optimized preventive control analysis: a case study with 2022 outbreak,” The European Physical Journal Plus, vol. 138, no. 8, pp. 1–34, 2023. DOI:10.1140/epjp/s13360-023-04305-6

M. Rayungsari et al., “Dynamics analysis of a predator–prey fractional-order model incorporating predator cannibalism and refuge,” Frontiers in Applied Mathematics and Statistics, vol. 9, p. 1122330, 2023. DOI:10.3389/fams.2023.1122330

I. Area et al., “On a fractional order ebola epidemic model,” Advances in Difference Equations, vol. 2015, pp. 1–12, 2015. DOI:10.1186/s13662-015-0613-5

R. R. Musafir et al., “Stability analysis of a fractional-order monkeypox epidemic model with quarantine and hospitalization,” Journal of Biosafety and Biosecurity, vol. 6, no. 1, pp. 34–50, 2024. DOI:10.1016/j.jobb.2024.02.003

E. Bonyah et al., “Fractional stochastic modelling of monkeypox dynamics,” Results in Control and Optimization, vol. 12, p. 100277, 2023. DOI:10.1016/j.rico.2023.100277

K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type. Springer Science & Business Media, 2010.

A. Atangana and D. Baleanu, “New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model,” Thermal Science,, vol. 20, pp. 763–769, 2016. DOI:10.2298/TSCI160111018A

Centers for Disease Control and Prevention, “JYNNEOS Vaccine,” 2023, https://www.cdc.gov/poxvirus/mpox/interim-considerations/jynneos-vaccine.html [accessed: November 22, 2023].

R. R. Musafir et al., “Optimal control of a fractional-order monkeypox epidemic model with vaccination and rodents culling,” Results in Control and Optimization, vol. 14, p. 100381, 2024. DOI:10.1016/j.rico.2024.100381

H. S. Panigoro et al., “Dynamics of an eco-epidemic predator–prey model involving fractional derivatives with power-law and mittag–leffler kernel,” Symmetry, vol. 13, no. 5, p. 785, 2021. DOI:10.3390/sym13050785

N. Anggriani et al., “A predator–prey model with additive allee effect and intraspecific competition on predator involving atangana–baleanu–caputo derivative,” Results in Physics, vol. 49, p. 106489, 2023. DOI:10.1016/j.rinp.2023.106489

M. A. Qurashi et al., “New numerical dynamics of the fractional monkeypox virus model transmission pertaining to nonsingular kernels,” Mathematical Biosciences and Engineering, vol. 20, no. 1, pp. 402–436, 2023. DOI:10.3934/mbe.2023019

O. J. Peter et al., “Transmission dynamics of monkeypox virus: a mathematical modelling approach,” Modeling Earth Systems and Environment, pp. 1–12, 2022. DOI:10.1007/s40808-021-01313-2

A. El-Mesady, A. Elsonbaty, and W. Adel, “On nonlinear dynamics of a fractional order monkeypox virus model,” Chaos, Solitons & Fractals, vol. 164, p. 112716, 2022. DOI:10.1016/j.chaos.2022.112716

M. A. Taneco-Hernández and C. Vargas-De-León, “Stability and lyapunov functions for systems with atangana–baleanu caputo derivative: an hiv/aids epidemic model,” Chaos, Solitons & Fractals, vol. 132, p. 109586, 2020. DOI:10.1016/j.chaos.2019.109586

K. Diethelm, N. J. Ford, and A. D. Freed, “A predictor-corrector approach for the numerical solution of fractional differential equations,” Nonlinear Dynamics, vol. 29, pp. 3–22, 2002. DOI:10.1023/A:1016592219341

D. Baleanu, A. Jajarmi, and M. Hajipour, “On the nonlinear dynamical systems within the generalized fractional derivatives with mittag–leffler kernel,” Nonlinear dynamics, vol. 94, pp. 397–414, 2018. DOI:10.1007/s11071-018-4367-y




DOI: https://doi.org/10.37905/jjbm.v5i1.24920

Copyright (c) 2024 Raqqasyi Rahmatullah Musafir, Agus Suryanto, Isnani Darti, Trisilowati

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Jambura Journal of Biomathematics (JJBM) has been indexed by:


                          EDITORIAL OFFICE OF JAMBURA JOURNAL OF BIOMATHEMATICS

 Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
Jl. Prof. Dr. Ing. B. J. Habibie, Moutong, Tilongkabila, Kabupaten Bone Bolango 96554, Gorontalo, Indonesia
 Email: editorial.jjbm@ung.ac.id
 +6281356190818 (Call/SMS/WA)
 Jambura Journal of Biomathematics (JJBM) by Department of Mathematics Universitas Negeri Gorontalo is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.  Powered by Public Knowledge Project OJS.